

sPHENIX Experience with ACTS

Joe Osborn ORNL May 25, 2020

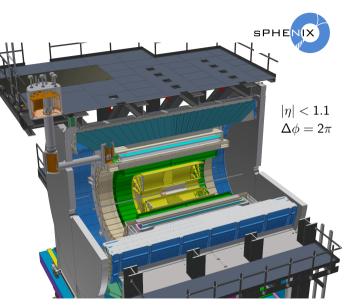
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

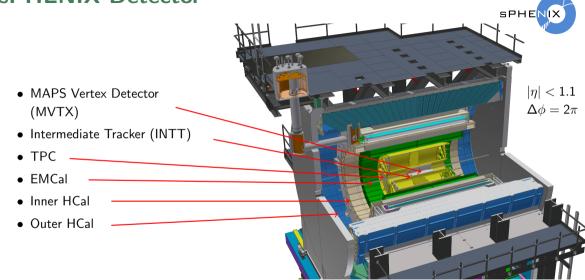
sPHENIX Tracking Challenges

- $\bullet\,$ RHIC will deliver Au+Au collisions up to ${\sim}200~kHz$
 - On average, 3-8 (heavy ion!) pileup events per bunch crossing

sPHENIX Tracking Challenges

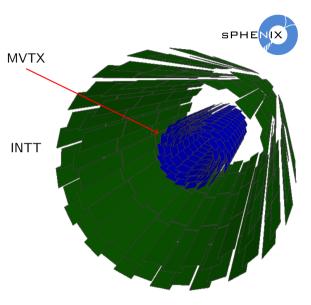
- $\bullet\,$ RHIC will deliver Au+Au collisions up to ${\sim}200$ kHz
 - On average, 3-8 (heavy ion!) pileup events per bunch crossing
- Data processing planned for fixed latency, finite size computing center at BNL


sPHENIX Tracking Challenges


- $\bullet\,$ RHIC will deliver Au+Au collisions up to ${\sim}200$ kHz
 - On average, 3-8 (heavy ion!) pileup events per bunch crossing
- Data processing planned for fixed latency, finite size computing center at BNL
- Require high speed, efficient, and precise tracking in an environment where $\mathcal{O}(100,000)$ hits are expected
- Need to reduce tracking time to less than 5 seconds per event in these conditions

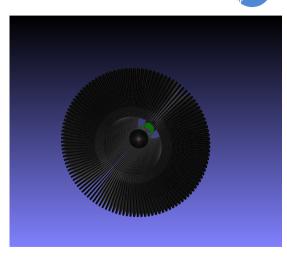
sPHENIX Detector

- MAPS Vertex Detector (MVTX)
- Intermediate Tracker (INTT)
- TPC
- EMCal
- Inner HCal
- Outer HCal



sPHENIX Detector

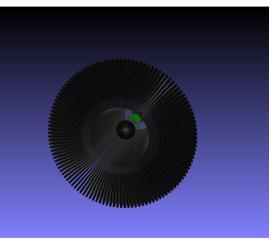
sPHENIX and ACTS


- Github migration very useful for us, and possibly other external (CERN) experiments also
- Using TGeo plugin within Acts to construct silicon surfaces

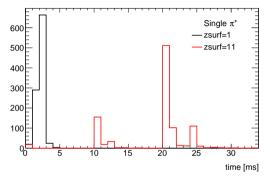
sPHENIX and ACTS

loe Osborn

- Github migration very useful for us, and possibly other external (CERN) experiments also
- Using TGeo plugin within Acts to construct silicon surfaces
- TPC remains a challenge, as Acts does not support these kinds of geometries currently

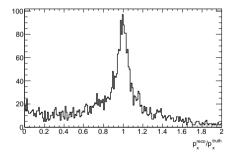


SPHE


sPHENIX and ACTS

- Github migration very useful for us, and possibly other external (CERN) experiments also
- Using TGeo plugin within Acts to construct silicon surfaces
- TPC remains a challenge, as Acts does not support these kinds of geometries currently
- Currently we modify TGeoManager to build TPC boxes, which then the TGeo Acts plugin picks up and builds surfaces out of
- However, this isn't viable long term

sPHENIX + Acts Status

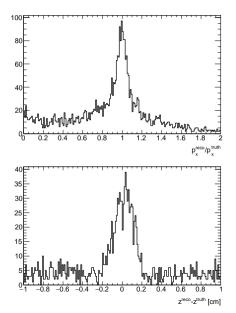


- Very preliminary
- \sim 70000 TPC surfaces
- \sim 7000 TPC surfaces

- Can run Acts Kalman track fitter, combinatorial Kalman track finder
 - Currently only using KF. Will investigate CKF later
- Run KF time tests per single ${\sim}4$ GeV π^+ track
- Time per track depends significantly on number of z surfaces in TPC (unsurprising)
- Track fit doesn't seem to be completely correct due to covariance matrix rotation (more next slide)

sPHENIX+ Acts Status

- Track fitting in place
- Still not convinced covariance matrix rotation is correctly implemented
- Large tails present in distributions
 - These show 1000 events of five π^+ with $1 < p_T^\pi < 6$ GeV



sPHENIX+ Acts Status

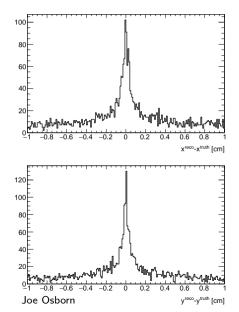
• Track fitting in place

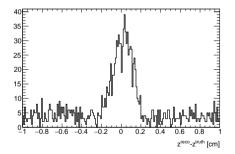
loe Osborn

- Still not convinced covariance matrix rotation is correctly implemented
- Large tails present in distributions
 - These show 1000 events of five π^+ with $1 < p_T^\pi < 6~{\rm GeV}$
- Additionally z_{vtx} point of closest appraoch is very poorly fit (notice scale of y axis compared to other histogram)

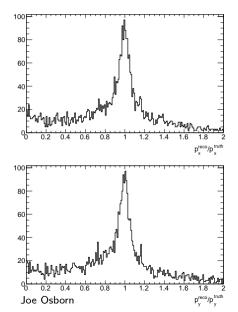
Challenges Faced

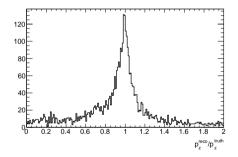
- TPC how do we implement it long term?
 - Idea to dynamically generate surfaces on the fly based on a measurement position
 - Pros flexible, could be implemented for virtually any geometry
 - Cons Probably memory hungry, especially for TPC scenario where $\mathcal{O}(100,000)$ hits are expected per event
 - How to handle space charge distortions?
 - Strong induced electric field from ionized charge displaces measurements by $\mathcal{O}(mm)$ how to handle in Acts?


Challenges Faced


- TPC how do we implement it long term?
 - Idea to dynamically generate surfaces on the fly based on a measurement position
 - Pros flexible, could be implemented for virtually any geometry
 - Cons Probably memory hungry, especially for TPC scenario where $\mathcal{O}(100,000)$ hits are expected per event
 - How to handle space charge distortions?
 - Strong induced electric field from ionized charge displaces measurements by $\mathcal{O}(\mathsf{mm})$ how to handle in Acts?
- Covariance matrix rotation for FW::TrackParameters
 - Firstly, it wasn't obvious that covariance matrix should be in local coordinates since FW::TrackParameters takes global position and momentum vectors (I had assumed it should all be global)
 - sPHENIX track covariance matrix comes in global (x, y, z, p_x, p_y, p_z) basis. Acts expects local (d₀, z₀, φ, θ, q/p, t)
 - No robust documentation discussing how to use the tools, other than RecTruthTracks.cpp example (e.g. what is meant by local)
 - A "realistic" example starting from a detector object and running through the entire track fitting process would be useful (not just passing resolutions as in RecTruthTracks)

Back Up




PCA Fit Results

Momentum Fit Results

