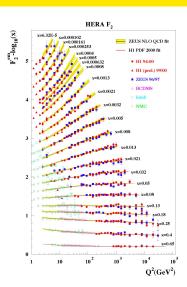
Recent Experimental Results on QCD Factorization Breaking of Nonperturbative Functions

Joe Osborn University of Michigan

Based on work in arXiv:1609.04769, submitted to Phys. Rev. D

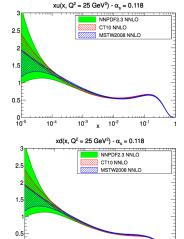
October 25, 2016

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>


Joe Osborn (UM) BNL Nuclear Seminar 10/25/2016 1

Outline

- Why study the 3-D structure of nucleon
- Physics in the transverse momentum dependent framework
- PHENIX and two particle angular correlations
- Recent results on factorization breaking
- Future factorization breaking measurements


Mapping the Structure of the Proton

- Longitudinal structure of proton in terms of
 x = p_{quark}/p_{proton}
- Well mapped out over large range of x and Q^2
- Historically have used semi-inclusive deep-inelastic-scattering (SIDIS) and Drell-Yan (DY) as probes of QCD structure

1-D Structure

- This has led to incredible precision for partonic structure of nucleons in the longitudinal direction!
- Collinear parton distribution functions (PDFs) are very well constrained
- What about other degrees of freedom?

10-3 Figures taken from http://nnpdf.hepforge.org

10-2

10.2

10-4

10-1

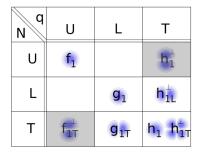
Multidimensional Proton Structure

- What does the bound-state proton look like in terms of the quarks and gluons inside it?
 - Position
 - Momentum
 - Spin
 - Flavor
 - Charge
 - Color (!)
- Significant work has gone into understanding 1-D longitudinal momentum structure. What about transverse momentum?

1D vs. 3D Nonperturbative Functions

 Historically PDFs and FFs are approximated as only dependent on the collinear momentum fraction x

- In reality there must be transverse structure due to the confined nature of the partons and the additional possibility of gluon radiation
- The unintegrated k_T distributions are explicitly dependent on transverse momentum


Parton Distribution Functions:
$$f(x) \rightarrow f(x, k_T)$$

Fragmentation Functions:
$$D(z) \rightarrow D(z, j_T)$$

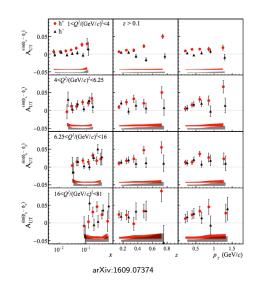
We can also add spin into the picture...

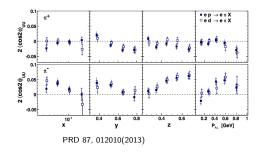
Transverse-Momentum-Dependent PDF and FF Zoo

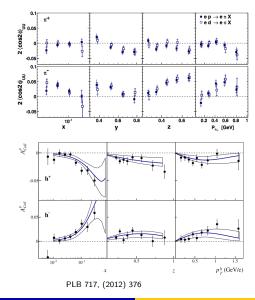
Transverse-Momentum-Dependent (TMD) PDFs

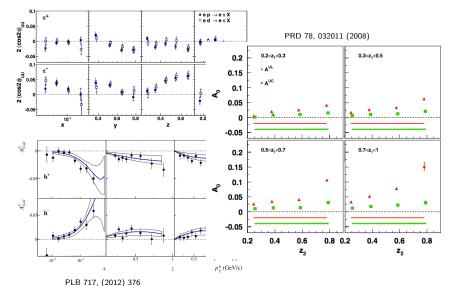
Transverse-Momentum-Dependent (TMD) FFs

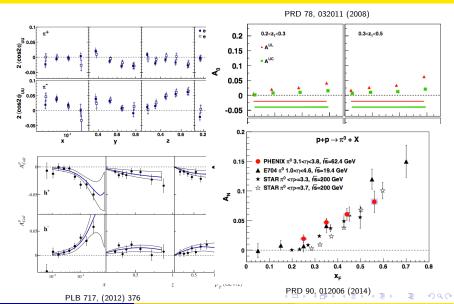
Nq	U	L	Т
U	D_1		H ₁
L		G_{1L}	Hi
Т	H ₁ T	G _{1T}	H ₁ H ₁₇

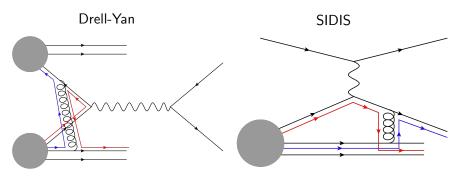

 8 TMD PDFs and TMD FFs at twist-2 describing partonic structure, spin-spin, and spin-momentum correlations!


Long Island beach in 1D


Long Island beach in 3D



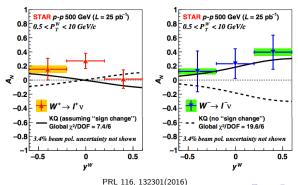

- Many TMD PDFs and TMD FFs correlate spin with momentum
- Beginning to really explore partonic correlations within the nucleon! New era of nucleon structure
- Are these correlations really there?


Joe Osborn (UM) BNL Nuclear Seminar

10/25/2016

Transverse-Momentum-Dependent Phenomenology

- In the collinear framework, PDFs and FFs are taken to be universal, process independent functions
- In the TMD framework, it has been necessary to re-check these assumptions
- This has led to very interesting predictions...

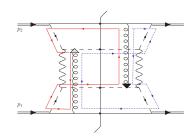

Universality in Transverse-Momentum-Dependent Functions

- Sign change in Sivers TMD PDF predicted due to initial-state vs. final-state gluon exchange with proton remnants between DY and SIDIS: modified universality of TMD PDF!
- Factorization of TMD PDFs and TMD FFs still predicted to hold in these QED processes

First Measurement of Possible Modified Universality

- SIDIS Sivers asymmetries have been measured, e.g. by HERMES and COMPASS
- First measurement of DY type process from STAR at RHIC!
- Hints at sign change if TMD evolution effects are small

. ,

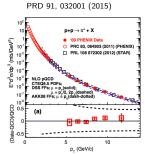

16 / 47

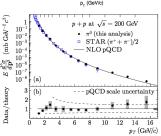
Factorization of Transverse-Momentum-Dependent Functions

- Factorization is still predicted to hold in SIDIS and DY
- What about leading-order QCD processes where a colored quark or gluon is exchanged?
- Color present in both the initial and final state therefore soft gluon exchange possible in both the initial and final state

Factorization of Transverse-Momentum-Dependent Functions

- Factorization breaking predicted in a TMD framework for $p + p \rightarrow h_1 + h_2$ (PRD 81, 094006 (2010))
- TMD PDFs and FFs no longer defined - partons are quantum mechanically correlated across bound state hadrons!
- Consequence of soft gluon exchanges in both the initial and final state

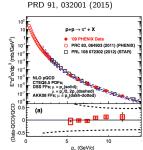


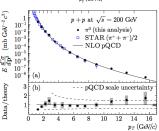

 Predicted modified universality of certain TMD PDFs and factorization breaking from same physical process - consequences of color flow in action!

4 D > 4 D > 4 E > 4 E > E 990

Unique Quality of RHIC and PHENIX/STAR

- Can only study this effect in hadronic collisions
- RHIC ideal since initial-state k_T not too large
- Additionally PHENIX/STAR detectors can measure to small p_T

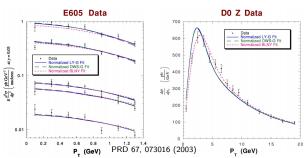




PRD 80, 111108 (2009) = > = > 9

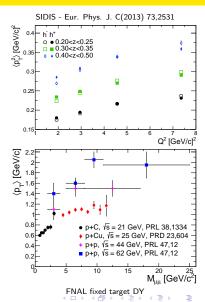
Looking for Factorization Breaking

- An obvious way to look for effects is by comparing measurement to a calculation which assumes factorization
- Problem: calculations require good knowledge of the nonperturbative TMD PDFs and TMD FFs.
 Collinear pQCD calculations still have ~10-40% errors
- What about using TMD evolution??


PRD 80, 111108 (2009)

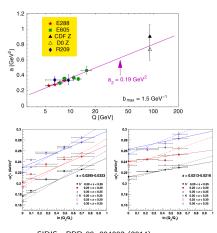
10/25/2016

20 / 47


Collins-Soper-Sterman (CSS) Evolution

- CSS evolution first published in 1985
- ullet Has been used to successfully describe FNAL DY (E605) and Tevatron Z^0 cross sections
- Clear qualitative prediction momentum widths sensitive to nonperturbative transverse momentum increase with increasing hard scale
- Due to increased phase space for hard gluon radiation

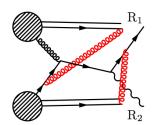
DY/Z and SIDIS in CSS Evolution

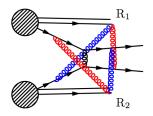

- Measurements show that DY and SIDIS follow prediction of CSS evolution
- The CSS evolution equation comes directly out of the derivation for TMD factorization

DY/Z and SIDIS in CSS Evolution

- Phenomenological studies confirm that DY and SIDIS follow CSS evolution
- The CSS evolution equation comes directly out of the derivation for TMD factorization
- DY and SIDIS clearly follow prediction

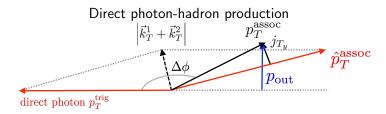
DY/Z - PLB 633, 710 (2006)

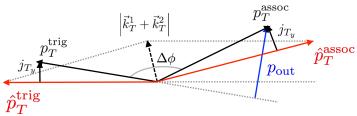

SIDIS - PRD 89, 094002 (2014)


4 D > 4 P > 4 B > 4 B > B 9 Q P

23 / 47

Direct Photons and Dihadrons

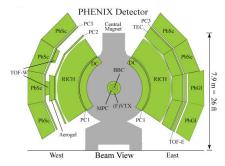

- Direct photon-hadron and dihadron correlations both predicted to be sensitive to factorization breaking effects in PHENIX
- Assuming factorization, direct photon-hadrons probe three nonperturbative functions, while dihadrons probe four
- Direct photons offer one less avenue for gluon exchange in the final-state: fewer/different effects?



Joe Osborn (UM) BNL Nuclear Seminar 10/25/2016

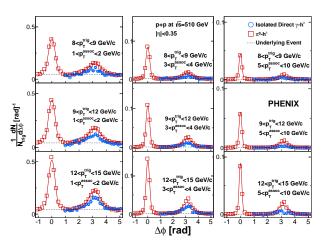
Angular Correlation Observables

Dihadron production



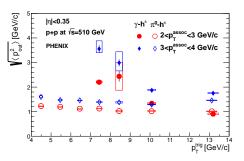
$$p_{out} = p_T^{assoc} \sin \Delta \phi$$

10/25/2016

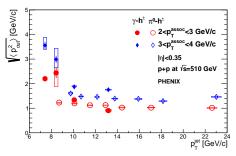

PHENIX Detector

- PHENIX central arms
 - $\Delta \phi \sim \pi$
 - $|\eta| < 0.35$
- Electromagnetic Calorimeter (PbSc/PbGI) provides isolated direct photon and $\pi^0 \to \gamma \gamma$ detection
- Drift Chamber (DC) and Pad Chambers (PC) provide nonidentified charged hadron detection

• New results from $2012/2013 \sqrt{s}=510 \text{ GeV}$ p+p runs


$\Delta \phi$ Correlations for π^0 -h $^{\pm}$ and Direct γ -h $^{\pm}$

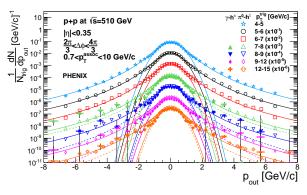
- ullet Two jet structure visible for π^0 -h $^\pm$, isolation cut on near side for direct γ -h $^\pm$
- \bullet Direct $\gamma\text{-h}^\pm$ probes smaller jet energy due to emerging from hard scattering at LO


Joe Osborn (UM) BNL Nuclear Seminar 10/25/2016 27 / 47

$\sqrt{\langle p_{out}^2 \rangle}$ Extracted from Fits to $\Delta \phi$ Correlations

- $\sqrt{\langle p_{out}^2 \rangle}$ characterizes away-side jet width in momentum space
- Decreases with hard scale, opposite of SIDIS and DY!
- Sensitive to perturbative and nonperturbative k_T and j_T ; fits are to entire away-side jet

$\sqrt{\langle p_{out}^2 \rangle}$ vs. p_T^{jet}

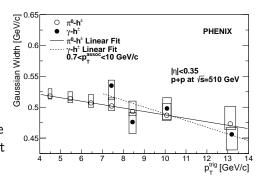


- ullet Examined $\sqrt{\langle p_{out}^2
 angle}$ as a function of p_T^{jet} as well
- $p_T^{jet} = p_T^{trig}$ for direct photons
- $p_T^{jet} = p_T^{trig}/\langle z_T \rangle$ for π^0 s, with $\langle z_T \rangle$ estimated using PYTHIA • $\langle z_T \rangle = \frac{p_T^{trig}}{\hat{p}_T^{trig}}$
- The $\sqrt{\langle p_{out}^2 \rangle}$ distributions almost form a continuous function?

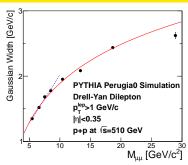
(ロ) (部) (差) (差) 差 り(で)

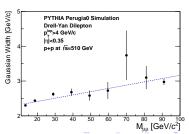
pout Distributions

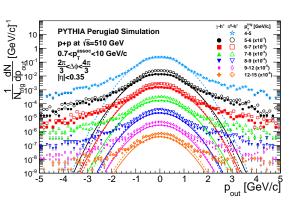
- p_{out} shows two distinct regions: Gaussian and power law
- Gaussian fits clearly fail past ${\sim}1.3$ GeV/c
- Indicates transition from nonperturbative to perturbative k_T and j_T



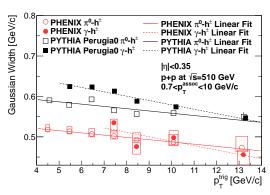
 Note: Curves are Kaplan and Gaussian fits, not calculations!!


30 / 47


Gaussian Widths of pout


- Extract Gaussian widths of p_{out} vs. p_T^{trig}
- Sensitive to only nonperturbative k_T and j_T in the nearly back-to-back region $\Delta \phi \sim \pi$
- Gaussian widths decrease with p_T^{trig} also, consistent with $\sqrt{\langle p_{out}^2 \rangle}$ and opposite of SIDIS and DY!

- To make a comparison, used PYTHIA simulation
- Chose Perugia0 tune since it was tuned to low p_T Z Boson data from the Tevatron
- Should describe Drell-Yan reasonably well
- PYTHIA reproduces expectation from CSS evolution in Drell-Yan over large range of $M_{\mu\mu}$



- Can construct p_{out} distributions for direct photons and dihadrons in PYTHIA as well using Perugia0 tune for direct comparison
- PYTHIA replicates the nonperturbative to perturbative transition in the p_{out} distributions

- PYTHIA also replicates the negative slope of the gaussian widths in γ -h and π^0 -h!
- Magnitudes of widths from PYTHIA show ~15% difference from data despite slope being replicated

 Decreasing trend does not depend on choice of tune (several were tested)

- WHY does PYTHIA replicate both DY and $p+p \rightarrow h+X??$
- Unlike a standard pQCD calculation, PYTHIA forces all particles to color neutralize in the event, including remnants
- PYTHIA allows initial and final state soft gluon exchanges, as well as initial and final state interactions!
- People from Lund group confirm that it is plausible that PYTHIA would be sensitive to such effects

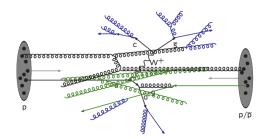
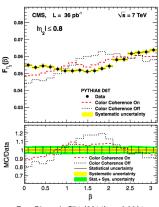


Image taken from http://home.thep.lu.se/ torbjorn/talks/karlsruhe10a,pdf = , , = , = ,

Relations to Other QCD Studies?

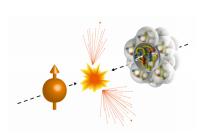
 Factorization breaking in heavy ions from CMS: PRC 92,034911 (2015)


$$rac{dN^{
m pair}}{d\Delta\phi}\propto 1{+}2\sum_n V_{n\Delta}\cos(n\Delta\phi)$$

CMS finds that

$$V_{n\Delta} \neq v_n^a v_n^b$$

where v^a and v^b are the single-particle flow harmonics for a pair of particles


 Color coherence studies at the Tevatron and LHC

Eur. Phys. J. C74 (2014) no.6,2901

Future Measurements

- Recent RHIC Run-15 delivered one of the most unique data sets to PHENIX and STAR
- RHIC collided $p^{\uparrow}+p$, $p^{\uparrow}+Au$, and $p^{\uparrow}+Al$ at $\sqrt{s}=200$ GeV
- PHENIX recorded $\sim 10 x$ the amount of $\sqrt{s} = 200$ GeV data from previous analysis
- Possibility to compare p+p at $\sqrt{s}=200$ and 510 GeV (TMD evolution)

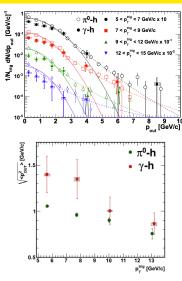
- Possibility to compare p+p to p+A (stronger gluon fields in nucleus??)
- Does transverse spin change anything?? (It almost always does...)

Conclusions

- Extending the knowledge of nucleon structure from 1 dimension to 3 dimensions (and more!)
- Transverse-momentum-dependent nucleon structure offers a richer description of the nucleon with many interesting phenomenological predictions
- Factorization breaking has been predicted in hadronic collisions where a final-state hadron is measured in a transverse-momentum-dependent framework
- PHENIX has just released the first measurement studying these predicted effects - arXiv:1609.04769
- Data show the opposite evolution trend in the nonperturbative momentum widths from SIDIS and DY, where factorization is predicted to hold
- More measurements planned in the future... stay tuned!

Joe Osborn (UM)

BNL Nuclear Seminar

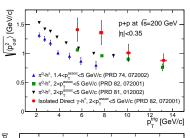

10/25/2016

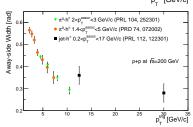
38 / 47

Back Up

\sqrt{s} =200 GeV Results from PHENIX

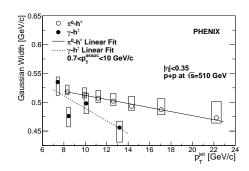
- Previous PHENIX result at \sqrt{s} =200 GeV with larger errors (Phys. Rev. D 82, 072001 (2010))
- Next step: analyze recent Run 15 \sqrt{s} =200 GeV p+p and p+A data from RHIC!
- 6x luminosity in Run 15 p+p, as well as first result from p+A
- Can also look at transverse spin dependence in Run 15!

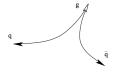



40 / 47

Joe Osborn (UM) BNL Nuclear Seminar 10/25/2016

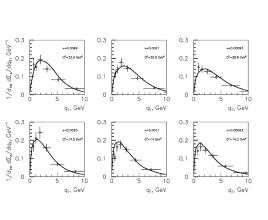
\sqrt{s} =200 GeV Results from RHIC

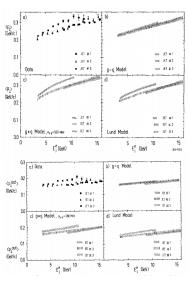

- Previous PHENIX result at \sqrt{s} =200 GeV to lower p_T^{trig} (PRD 81, 012002 (2010))
- Shows $\sqrt{\langle p_{out}^2 \rangle}$ over lower range of p_T^{trig}
- Also can plot away-side width in angular space same trend over large range of p_T^{trig}



$\langle z_T \rangle$ with Gaussian Widths

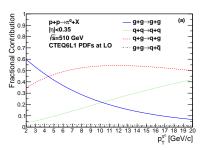
- $\langle z_T \rangle$ p_T^{trig} correction was also applied to Gaussian widths vs. p_T^{trig}
- \(\z_T\)\) more or less amounts to a scale factor of 2 difference in the slope


More about Color Coherence

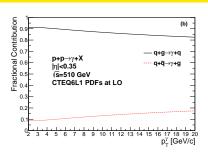

- Radiation "drags" color away from vertex
- Destructive interference occurs away from emitted gluons
- Soft radiation inhibited in certain areas
- Leads to certain regions of phase space where gluons constructively or destructively interfere

- See the following references
 - Phys. Rev. D 50,5562 (1994)
 - Phys. Lett. B 414 (1997) 419-427
 - Dokshitzer, Yuri.
 Basics of Perturbative
 QCD (Editions
 Frontieres, 1991)
 Chapters 4,5,9

SIDIS and e^+e^- Annihilation Momentum Widths



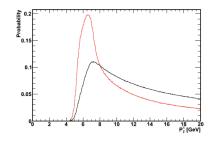
PRD 61, 014003



 Joe Osborn (UM)
 BNL Nuclear Seminar
 10/25/2016
 44 / 47

Partonic Contributions to Processes at LO

• π^0 contribution changes from gluon dominated at low p_T to mix of quark and gluons at high p_T

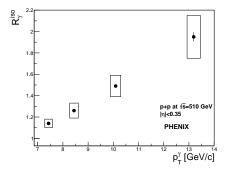


- Direct photon contribution dominated by QCD Compton scattering at all p_T
- NLO corrections small at midrapidity (Phys. Lett. B 140,87)

Analysis Methods

- Correlated $\pi^0 h^{\pm}$ or isolated γh^{\pm} are collected and corrected with:
 - Charged hadron efficiency
 - Acceptance correction
- Direct photons undergo additional statistical subtraction to remove decay photon background, estimated with Monte Carlo probability functions
- Isolation and tagging cuts remove decay photon background and NLO fragmentation photons

Probability for a π^0 to decay to a photon which could not be tagged with $5 < p_T < 7$ GeV/c in PHENIX



$$Y_{ extit{dir}}^{ extit{iso}} = rac{1}{R_{\gamma}^{ extit{iso}}-1} \left(R_{\gamma}^{ extit{iso}} Y_{ extit{inc}}^{ extit{iso}} - Y_{ extit{dec}}^{ extit{iso}}
ight)$$

PRD 82,072001 (2010) PRC 80,024908 (2009)

R_{γ}^{iso} Measurement at \sqrt{s} =510 GeV

- R_{γ}^{iso} measured for statistical subtraction of isolated decay photon contribution
- R_{γ} measured in PHENIX and corrected by tagging and isolation efficiencies
- $R_{\gamma}^{iso}>1$ indicates isolated direct photon production

$$R_{\gamma}^{iso} = rac{R_{\gamma}}{(1 - \epsilon_{dec}^{tag})(1 - \epsilon_{dec}^{niso})} rac{N_{inc}^{iso}}{N_{inc}}$$