Probing effects from QCD color with γ -h[±]/jet and dihadron/jet correlations

Joe Osborn

University of Michigan

June 25, 2018

• QCD is a non-Abelian quantum field theory

- QCD is a non-Abelian quantum field theory
- Fermions and bosons in QCD have color charge

- QCD is a non-Abelian quantum field theory
- Fermions and bosons in QCD have color charge
- Color has always been an integral part of the theory
- However the last several decades have illuminated some of the specific consequences that color can have within QCD!

Example 1: Color Entanglement

- Example: color entanglement
- When explicitly considering the transverse motion of partons in a nucleon, color entanglement predicted

Example 1: Color Entanglement

Example 1: Color Entanglement

- Example: color entanglement
- When explicitly considering the transverse motion of partons in a nucleon, color entanglement predicted
- Corresponds to break down of factorization in a transverse-momentum-dependent (TMD) framework
- Specifically a non-Abelian effect

• To probe transverse-momentum-dependent physics, an observable must be sensitive to two scales: $\Lambda_{QCD} \lesssim k_T \ll Q$

• To probe transverse-momentum-dependent physics, an observable must be sensitive to two scales: $\Lambda_{QCD} \lesssim k_T \ll Q$

• To probe transverse-momentum-dependent physics, an observable must be sensitive to two scales: $\Lambda_{QCD} \lesssim k_T \ll Q$

Collins-Soper-Sterman (CSS) Evolution with Q²

- CSS evolution first published in 1985. Similar to DGLAP evolution equation, but includes small transverse momentum scale
- Has been used to successfully describe global Drell-Yan and Tevatron Z⁰ cross sections

Collins-Soper-Sterman (CSS) Evolution with Q²

- CSS evolution first published in 1985. Similar to DGLAP evolution equation, but includes small transverse momentum scale
- Has been used to successfully describe global Drell-Yan and Tevatron Z⁰ cross sections
- Clear qualitative prediction momentum widths sensitive to nonperturbative transverse momentum increase with increasing hard scale
- Due to increased phase space for gluon radiation

Drell-Yan/Z and Semi-Inclusive DIS in CSS Evolution

 Phenomenological studies confirm that Drell-Yan and semi-inclusive DIS follow theoretical prediction

Drell-Yan/Z and Semi-Inclusive DIS in CSS Evolution

- Phenomenological studies confirm that Drell-Yan and semi-inclusive DIS follow theoretical prediction
- The evolution prediction comes directly out of the derivation for transversemomentum-dependent (TMD) factorization

Drell-Yan/Z and Semi-Inclusive DIS in CSS Evolution

- Phenomenological studies confirm that Drell-Yan and semi-inclusive DIS follow theoretical prediction
- The evolution prediction comes directly out of the derivation for transversemomentum-dependent (TMD) factorization
 - If TMD factorization, then CSS evolution. If not CSS evolution, then not TMD factorization!

Measurements of p_{out} Distributions in $p+p \rightarrow$ hadrons

- Two distinct regions:
 - Gaussian at small pout
 - Power law at large pout

Measurements of p_{out} Distributions in $p+p \rightarrow$ hadrons

- Two distinct regions:
 - Gaussian at small pout
 - Power law at large pout
- Indicates TMD observable $\Lambda_{QCD} \lesssim p_{out} \ll p_T^{\mathrm{trig}}$
- Can characterize any potential color effects by studying width evolution

Gaussian Width of p_{out} Evolution in $p+p \rightarrow$ hadrons

• Away-side Gaussian widths shown as a function of $p_T^{\rm trig}$ at $\sqrt{s} = 200$ and 510 GeV

- Away-side Gaussian widths shown as a function of $p_T^{\rm trig}$ at $\sqrt{s} = 200$ and 510 GeV
- Qualitatively similar behavior to Drell-Yan and semi-inclusive DIS interactions where color entanglement is not predicted

Comparing Drell-Yan and $p+p \rightarrow$ hadrons

- Since qualitative behavior is similar, calculations needed to compare transverse-momentum-dependent evolution rates in different processes
- Drell-Yan (no color entanglement predicted) and p+p → hadrons (color entanglement predicted) may exhibit different magnitudes, evolution rates, etc.

Extending Color Studies to *p*+A

 Can also extend Gaussian width studies to compare between p+A and p+p

Nonperturbative Transverse Momentum Broadening in p+A

- Can also extend Gaussian width studies to compare between p+A and p+p
- No significant near-side transverse momentum broadening

Nonperturbative Transverse Momentum Broadening in p+A

- Can also extend Gaussian width studies to compare between p+A and p+p
- No significant near-side transverse momentum broadening
- Nonzero away-side nonperturbative transverse momentum broadening in p+A

Broadening as a Function of N_{coll}

 Away-side transverse momentum broadening is clearly a function of N_{coll} for two x_E bins

Broadening as a Function of N_{coll}

- Away-side transverse momentum broadening is clearly a function of N_{coll} for two x_E bins
- Physical effects that contribute?
 - Stronger color fields in nucleus?

Broadening as a Function of N_{coll}

- Away-side transverse momentum broadening is clearly a function of N_{coll} for two x_E bins
- Physical effects that contribute?
 - Stronger color fields in nucleus?
 - Additional initial-state k_T in nucleus?
 - Energy loss?
 - Physical effects behind "Cronin" mechanisms?

• Another example: color coherence

Y. Dokshitzer. Basics of Perturbative QCD, 1991

- Another example: color coherence
- Color flow through hard processes leads to certain regions of particle production in hadronic collisions

Y. Dokshitzer. Basics of Perturbative QCD, 1991

- Another example: color coherence
- Color flow through hard processes leads to certain regions of particle production in hadronic collisions
- Color connects hard scattered partons with remnants of other proton

Y. Dokshitzer. Basics of Perturbative QCD, 1991

Example 2: Color Coherence

• The same underlying QCD phenomena at play - color leads to nonperturbative consequences

 β is angle in (φ, η) space between sub-leading hard-scattered jet and gluon initiated jet

- β is angle in (φ, η) space between sub-leading hard-scattered jet and gluon initiated jet
- β = 0 points to the beam closer to sub-leading jet in (φ, η) space

- β is angle in (φ, η) space between sub-leading hard-scattered jet and gluon initiated jet
- β = 0 points to the beam closer to sub-leading jet in (φ, η) space
- $\beta = \pi$ points to the beam farther from sub-leading jet in (ϕ, η) space

- β is angle in (φ, η) space between sub-leading hard-scattered jet and gluon initiated jet
- $\beta = 0$ points to the beam closer to sub-leading jet in (ϕ, η) space
- $\beta = \pi$ points to the beam farther from sub-leading jet in (ϕ, η) space
- Third jet more likely to be found at β = 0, β = π, i.e. similar φ but large η gap

Joe Osborn (UM)

Example 3: Jet Substructure

- Jet pull angle preferentially $\sim 0 \rightarrow {\rm color}$ connections
- Color affects radiation patterns within jets

What is the relation to jet backgrounds??

- Color has been shown to modify e.g. event and/or jet topologies in a variety of ways
- Therefore, it may be essential to consider these effects when studying new observables!

- Color has been shown to modify e.g. event and/or jet topologies in a variety of ways
- Therefore, it may be essential to consider these effects when studying new observables!
- This may be especially important for jet substructure studies, observables which are sensitive to global event characteristics, multiscale problems...

- Color has been shown to modify e.g. event and/or jet topologies in a variety of ways
- Therefore, it may be essential to consider these effects when studying new observables!
- This may be especially important for jet substructure studies, observables which are sensitive to global event characteristics, multiscale problems...
- It is also especially important for interpretation of future EIC data, where complex color flows may be more difficult to study due to differences in $\ell + p(A) \rightarrow \ell + h + X$ vs. $p+p(A) \rightarrow h/jet + X$

"Backgrounds" in jet observables can actually carry important information about fundamental aspects of QCD!

Back Up

Extending Color Studies to *p*+A

- Dihadrons give additional QCD interactions in *p*+A collisions compared to direct photon-hadrons
- Measure the p_{out} distributions on both the near-side and away-side in p+p and p+A to compare

• Color coherence measurements study:

$$\beta = \tan^{-1} \frac{\Delta \phi_{21}}{\operatorname{sign}(\eta_1) \Delta \eta_{21}}$$

- Angle in (φ, η) space between sub-leading hard-scattered jet and gluon initiated jet
- $\beta = 0$ points to the beam closer to jet 1 in (ϕ, η) space
- $\beta = \pi$ points to the beam farther from jet 1 in (ϕ, η) space

• ATLAS collaboration also measures β_{γ} , defined in a similar way to β_{jet}

$$\beta^{\gamma} = \tan^{-1} \frac{|\phi^{jet2} - \phi^{\gamma}|}{\operatorname{sign}(\eta^{\gamma}) \cdot (\eta^{jet2} - \eta^{\gamma})}$$

Example 3: Jet Substructure

Jet-pull vector predicted to be sensitive to color connections (PRL 105, 022001 (2010))

- Absence of color connection θ_p expected to be distributed uniformly
- Color connection θ_p expected to preferentially lie along jet connection vector $\theta_p \sim 0$

- Example $t\bar{t}$ color topology
- *tt* are color connected via gluon splitting
- Hadronizing quarks from *W* decays can also be color connected

