

Jet substructure at the EIC

Jets for 3D Imaging at the EIC Workshop

Joe Osborn, ORNL November 25, 2020

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Jet Substructure

- Searching "find fulltext 'jet substructure' and tc p" on INSPIRE yields number of published papers
- Number of papers per year has exploded in last decade
- Papers discuss wide range of physics interests
 - Searches for new particles
 - Heavy flavor jet tagging
 - BSM searches (e.g. dark matter)
 - Heavy ion collisions
 - Machine learning
 - QCD color connections

• ...

• Within the QCD community, jet substructure has been used to explore

Within the QCD community, jet substructure has been used to explore

• Hadronization

Phys. Rev. Lett. 123, 232001 (2019)

- Within the QCD community, jet substructure has been used to explore
 - Hadronization

CAK RIDGE

- Within the QCD community, jet substructure has been used to explore
 - Hadronization
 - Fragmentation

3

arXiv:2003.02114

- Within the QCD community, jet substructure has been used to explore
 - Hadronization
 - Fragmentation

arXiv:2003.02114

- Within the QCD community, jet substructure has been used to explore
 - Hadronization
 - Fragmentation
 - Energy loss in medium

arXiv:2003.02114

- Within the QCD community, jet substructure has been used to explore
 - Hadronization
 - Fragmentation
 - Energy loss in medium
 - Fundamental predictions of QCD as a gauge theory
 - ...

3

Jet Substructure in the 2020's

RHIC

See M. Zurek talk

See C. Aidala talk

Jet Substructure in the 2020's

RHIC

LHC

Jet Substructure Physics at EIC

- Jet substructure will be able to access a wide variety of physics at the EIC, notably
 - Fragmentation
 - Hadronization
 - Interplay between the two, inherently a dynamic process (!)
- Fundamental aspects of QCD!
 - How are hadrons formed from their constituents?

Jets at the EIC

- Jets at the EIC will look very different than at current hadron colliders
- Not only are the interactions/multiplicities etc. different, but the detectors will look very different!
 - Full EM+H calorimetry
 - PID (!)
 - Large areas of pseudorapidity covered " 4π " detector
- How do these considerations affect jet substructure studies?

Jet Multiplicities

- Jets will inherently have lower multiplicities
 - Lower \sqrt{s} , electron beam, ...
- Places importance on high reconstruction efficiency
- Plot shows for R=1 anti- k_T jets (!)

Jet Grooming Comparison

- Groomed jets at the EIC are much rarer than corresponding jets at (e.g.) the LHC
- Jets are frequently groomed at LHC, while jets at EIC are more likely to already satisfy grooming criteria
 RIDGE Joe Osborn

Groomed Multiplicities

• Groomed jets average 0-2 constituents removed

Groomed Multiplicities

- Groomed jets average 0-2 constituents removed
- What can we learn from constituents that are groomed away?
 - Target+current interactions?
 - Soft contributions to jets/FFs?

Breit Frame For Studying Hadronization

• LHCb and ATLAS see that quark jets are (on average) more collimated than gluon jets

Phys. Rev. Lett. 123. 232001 (2019)

Breit Frame For Studying Hadronization

- LHCb and ATLAS see that quark jets are (on average) more collimated than gluon jets
- Can use Breit and lab frames to switch quark/gluon fractions

Subjet Differences

- Can perform similar exercise for soft drop observables
- z_g only shows (small) differences at small z_g

Subjet Differences

- Can perform similar exercise for soft drop observables
- z_g only shows (small) differences at small z_g
- *R_g* seems to show more significant differences between the two frames

Subjet Differences

- Can perform similar exercise for soft drop observables
- z_g only shows (small) differences at small z_g
- *R_g* seems to show more significant differences between the two frames
- Can we infer or better understand (average) properties of fragmentation? e.g. *p*_T splittings of quarks and gluons vs. geometric distance

Jet Definitions at EIC?

- At hadron colliders, anti- k_T algorithm is the standard for a variety of reasons
- Should the same be true for EIC? What about jet axis?

Jet Definitions at EIC?

- At hadron colliders, anti- $k_{\mathcal{T}}$ algorithm is the standard for a variety of reasons
- Should the same be true for EIC? What about jet axis?
- A lot of recent theory work starting to address these questions experimentally we should start thinking about this
 - e.g. Centauro algorithm, other spherically invariant algorithms, etc.
 - e.g. standard jet axis, Winner-take-all axis, etc.

PID at **EIC**

- Throughout the Yellow Report process, there has been significant back and forth between PWG and DWG on requirements for an EIC detector
- To do the jet substructure physics we want to do, what matters and/or is lacking?

PID at **EIC**

- Throughout the Yellow Report process, there has been significant back and forth between PWG and DWG on requirements for an EIC detector
- To do the jet substructure physics we want to do, what matters and/or is lacking?
- PID currently has the strongest requirements
- What PID requirements are needed?

 The available PIDed (z, j_T) phase space that could be probed with Jet/HF PWG PID requirements

 The available PIDed (z, j_T) phase space that could be probed with Jet/HF PWG PID requirements The ratio of the PID detector matrix requirements to Jet/HF PWG PID requirements

- Lowering the p_T^{jet} requirement to 5 GeV trivially allows some phase space back in
- However, this recovery is limited to $Q^2 < 100 \text{ GeV}^2$, as one might expect (see backup)
- For jet substructure at large p_T^{jet} , PID capabilities need to reach to higher p

CAK RIDGE Joe Osborn

Conclusions

- Jet substructure is a rapidly growing field in QCD research
- Jets will look very different at the EIC than at hadron colliders
 - Use as an opportunity for comparing and contrasting different "strengths" of e + p vs. p + p

Conclusions

- Jet substructure is a rapidly growing field in QCD research
- Jets will look very different at the EIC than at hadron colliders
 - Use as an opportunity for comparing and contrasting different "strengths" of e + p vs. p + p
- Jet substructure will allow for robust studies of hadronization and fragmentation
 - Can we use jet substructure to learn about both the fragmenting parton as well as the soft interactions that occur in the hadronization process?

Conclusions

- Jet substructure is a rapidly growing field in QCD research
- Jets will look very different at the EIC than at hadron colliders
 - Use as an opportunity for comparing and contrasting different "strengths" of e + p vs. p + p
- Jet substructure will allow for robust studies of hadronization and fragmentation
 - Can we use jet substructure to learn about both the fragmenting parton as well as the soft interactions that occur in the hadronization process?
- PID will be crucial! To study how hadrons are formed, we should know what hadron we are studying!
 - We need to do our best to determine what detector technologies are possible so that we know what we will (or won't) lose in terms of physics reach

Have a safe and fun Thanksgiving (if you celebrate it)!

Early CAD drawings of the PHENIX experiment at RHIC!

Back Up

Event Kinematics

• Jets will access a large area of (x, Q^2) space at both highest energies

10x100

p_⊤^{jet}>5 GeV

 π^{\pm} -in-jet

 $|\eta^{jet}| {<} 1$

10x100

 p_T^{jet} >5 GeV

 π^{\pm} -in-jet

 $|\eta^{jet}| {<} 1$

• Jet/HF proposed detector PID requirements

• Current default detector PID requirements

M. Arratia, '20 YR

- Substantial loss of PIDed statistics at high z and Q^2