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Jets

• Jet physics is a broad experimental

endeavor at RHIC and the LHC

• Enabled by more robust

comparisons that can be made

between theory and experiment

with recent jet finding algorithms

• Jets are a proxy for partons, and

thus provide sensitivity to the

underlying partonic dynamics
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Jet Hadronization

• BUT - jets are still formed from

final-state hadrons!

• Nonperturbative elements of QCD

still important in understanding

perturbative jets

• We can use a perturbative object to

learn about nonperturbative physics
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How do jets really form?
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Jet Formation

Joe Osborn (ORNL) 3

q

q

g

g

q

q

q̄ . . . hadrons



Jet Formation

Joe Osborn (ORNL) 3



Jet Formation

Joe Osborn (ORNL) 3

Fragmentation

Hadronization



Fragmentation vs. Hadronization

Fragmentation

• Use jet grooming algorithms to

identify “prongs” of jet, as a proxy

for partonic splittings
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Hadronization: What do we want?

• What is on our wish list to robustly

study hadronization?

1. A way to connect the initial-state
parton to the final-state hadrons

• Jets, as a proxy for a parton,

are a tool to connect the

perturbative to

nonperturbative

2. A way to connect the flavors of
the initial-state parton to the
final-state hadrons

• Would allow for complete

characterization of

parton → hadron

3. Statistics to study

multi-differential correlations
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• Baryon vs. meson

• Resonance production (φ, J/ψ, Υ)

• Correlations (e.g. kinematic,

PIDed. . . )

• . . .



STAR Soft Drop

• New STAR results are first study at

RHIC of Soft Drop splittings

• Highlight RG , which shows need for

more robust theory calculations

relating fragmentation and

hadronization effects
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Flavor Dependence - Heavy Quarks

• First study trying to observe the

dead cone effect

• Suppression of splittings at small

angles comparing D0 to inclusive

jets

• Measurement of D0 production as a

function of radial dimension

• More exotic Λ+
c hadronization

studies
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Flavor Dependence - g → bb̄

• Measurement of bb̄ jets from gluon

splitting

• Improve understanding of boosted

H → bb̄ decays

• Improve understanding of bb̄

fragmentation
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Flavor Dependence - Quark vs. Gluon
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• Starting to move towards flavor

dependence

• Use direct photon tags to

preferentially select light quarks vs.

gluons

• On average, light quark jets

produce higher momentum particles

than gluon jets
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ATLAS Inclusive and LHCb Z+jet

• Compare ATLAS inclusive jet

to LHCb Z+jet

• Light quark jets produce

higher momentum particles

than gluon jets

• Light quark jets are more

collimated than gluon jets
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LHCb Z+jet vs. ATLAS γ-jet

• ATLAS midrapidity γ-jet and

LHCb forward rapidity Z -jet

distributions are very similar

• Both processes light quark

jet dominated

• Light quark jet structure

shows little rapidity

dependence

• Hint of more collimated jets

in Z+jet

• Massive Z vs. massless γ?
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ATLAS Inclusive and LHCb Z+jet

• Transverse momentum

distributions show smaller

〈jT 〉 in Z+jet vs. inclusive

jet at small jT

• Consistent with more

collimated light quark vs.

gluon jets

• Perturbative region quite

similar between quark and

gluon jets

 [GeV]
T

j
1 2 3

]
-1

 [
G

eV
TjddN

je
t

N1

2−10

1−10

1

10

210

310

410

510
+jetZLHCb 

 = 8 TeVs

 < 4.5Zη < 120 GeV, 2 < µµM60 < 

 = 0.5R < 4, jetη2.5 < 

 > 4 GeVhadronp > 0.25 GeV, hadron
T

p

 < 30 GeVjet
T

p20 < 

 < 50 GeV (x10)jet
T

p30 < 

ATLAS inclusive jet

EPJ C71, 1795 (2011)

 = 7 TeVs

 = 0.6R| < 1.2, jetη|
 > 0.5 GeVtrack

T
p

 < 40 GeVjet
T

p25 < 

 < 60 GeV (x10)jet
T

p40 < 

Joe Osborn (ORNL) 12

Phys. Rev. Lett. 123, 232001 (2019)

LHCb quark jet (filled) - red and black

ATLAS gluon jet (open) - blue and green



ATLAS Inclusive and LHCb Z+jet

• Transverse momentum

distributions show smaller

〈jT 〉 in Z+jet vs. inclusive

jet at small jT

• Consistent with more

collimated light quark vs.

gluon jets

• Perturbative region quite

similar between quark and

gluon jets

 [GeV]
T

j
1 2 3

]
-1

 [
G

eV
TjddN

je
t

N1

2−10

1−10

1

10

210

310

410

510
+jetZLHCb 

 = 8 TeVs

 < 4.5Zη < 120 GeV, 2 < µµM60 < 

 = 0.5R < 4, jetη2.5 < 

 > 4 GeVhadronp > 0.25 GeV, hadron
T

p

 < 30 GeVjet
T

p20 < 

 < 50 GeV (x10)jet
T

p30 < 

ATLAS inclusive jet

EPJ C71, 1795 (2011)

 = 7 TeVs

 = 0.6R| < 1.2, jetη|
 > 0.5 GeVtrack

T
p

 < 40 GeVjet
T

p25 < 

 < 60 GeV (x10)jet
T

p40 < 

Joe Osborn (ORNL) 12

Phys. Rev. Lett. 123, 232001 (2019)

LHCb quark jet (filled) - red and black

ATLAS gluon jet (open) - blue and green



ATLAS Inclusive and LHCb Z+jet

• Transverse momentum

distributions show smaller

〈jT 〉 in Z+jet vs. inclusive

jet at small jT

• Consistent with more

collimated light quark vs.

gluon jets

• Perturbative region quite

similar between quark and

gluon jets  [GeV]
T

j
1 2 3

]
-1

 [
G

eV
TjddN

je
t

N1

2−10

1−10

1

10

210

310

410

510
+jetZLHCb 

 = 8 TeVs

 < 4.5Zη < 120 GeV, 2 < µµM60 < 

 = 0.5R < 4, jetη2.5 < 

 > 4 GeVhadronp > 0.25 GeV, hadron
T

p

 < 30 GeVjet
T

p20 < 

 < 50 GeV (x10)jet
T

p30 < 

ATLAS inclusive jet

EPJ C71, 1795 (2011)

 = 7 TeVs

 = 0.6R| < 1.2, jetη|
 > 0.5 GeVtrack

T
p

 < 40 GeVjet
T

p25 < 

 < 60 GeV (x10)jet
T

p40 < 

Joe Osborn (ORNL) 12

Phys. Rev. Lett. 123, 232001 (2019)

LHCb quark jet (filled) - red and black

ATLAS gluon jet (open) - blue and green



ATLAS Inclusive and LHCb Z+jet

• Comparing ATLAS

midrapidity inclusive jets to

LHCb forward Z+jet shows

jets are more collimated

when tagged with a Z

• Gluon jets “flatter” in radius,

while light quark jets are

“steeper”
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Multi-dimensional Measurements
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• We now have statistics to make

multi-dimensional measurements!

• Provide more information and

deeper understanding than

inclusive measurements

• Correlations between pT and r of

hadrons within jets

• Correlations between xE (proxy for

z) and jT

• Correlations between z , jT , and

angular production sensitive to 3D

polarized FFs

Joe Osborn (ORNL) 14
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Future Jet Hadronization Measurements

• Where are we headed, and what

don’t we have?

• Particle ID (tracking, RICH,

calorimetry)

• Heavy flavor jet tagging

• Resonance production within jets

(φ, J/ψ, Υ)

• Correlations with flavor ID

Joe Osborn (ORNL) 15

Int. J. Mod. Phys. A 30, 1530022 (2015)

PRL 118, 192001 (2017)



Future Jet Hadronization Measurements

• sPHENIX is a dedicated jet

detector being constructed at RHIC

• CD3 recently approved,

construction is moving forward for

installation in 2022

• Jet substructure and hadronization

a major component of science case
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Future Jet Hadronization Measurements

• sPHENIX is a dedicated jet

detector being constructed at RHIC

• CD3 recently approved,

construction is moving forward for

installation in 2022

• Jet substructure and hadronization

a major component of science case

Joe Osborn (ORNL) 16



Hadronization at an Electron Ion Collider

• Electron Ion Collider (EIC) will be a

QCD physics machine

• Hadronization is a major pillar of EIC

physics case

• Developing ideas in the next decade

before EIC will be crucial to maximize

science output of this unique QCD

machine!

Joe Osborn (ORNL) 17
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Conclusions

• Jet substructure and hadronization has exploded onto the high

energy and nuclear physics scene, with wide ranging physics interests

• Entering phase of synthesizing information and asking more

fundamental questions

• Kinematic correlations between hadrons in jets

• Light quark vs. gluon jet hadronization

• Heavy quark jet substructure

• Many opportunities moving forward, beginning to utilize PID,

multidifferential measurements, etc.

• Ideas behind hadronization are relatively undeveloped, but there will

be significant growth with current and future experiments!
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Back Up
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Analysis Details

Joe Osborn (ORNL) 19

• Follow similar analysis strategy to ATLAS (EPJC 71, 1795 (2011),

NPA 978, 65 (2018)) and LHCb (PRL 118, 192001 (2017))

• Z → µ+µ− identified with 60 < Mµµ < 120 GeV, in 2 < η < 4.5

• Anti-kT jets are measured with R = 0.5, pjet
T > 20 GeV, in 2.5 < η < 4

• |∆φZ+jet | > 7π/8 and single primary vertex selects 2→ 2 topology

• Charged hadrons identified with pT > 0.25 GeV, p > 4 GeV, ∆R < 0.5

• Results efficiency corrected and 2D Bayesian unfolded



Jet Substructure

• Searching “find fulltext ’jet

substructure’ and tc p” on INSPIRE

yields number of published papers

• Number of papers per year has

exploded in last decade

• Papers discuss wide range of

physics interests

• Searches for new particles

• Heavy flavor jet tagging

• BSM searches (e.g. dark matter)

• Heavy ion collisions

• Machine learning

• QCD color connections

• . . .
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Theory Comparisons

• Theory colleagues have already published comparisons to data

• Reasonable description of data

• However, LHCb data has started a discussion on best (theoretically)

tractable ways to study hadronization
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Anti-kT Algorithm

• Sequential recombination algorithm

which clusters particles into jets

based on their pT

• Widely used as it is both infrared

and collinear safe in calculations

• Clusters particles around highest pT
particle in a conical shape

dij = min(p−2Ti
, p−2Tj

)
∆2

ij

R2

diB = p−2Ti
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Comparisons with PYTHIA (z)
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• PYTHIA generally underpredicts

the number of high z hadrons
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Comparisons with PYTHIA (jT )
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• PYTHIA generally gets jT shape,

with about a 20% difference in

normalization
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Comparisons with PYTHIA (r)
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• PYTHIA generally underpredicts

the number of small r hadrons
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Symbolic Beginning

• Substructure revolution symbolically initiated by 2010 Butterworth

et al PRL

• Motivated by searching for highly boosted VH → `±bb̄ production

• Jet substructure was motivated by new particle searches

• However, many fields of physics at collider facilities quickly realized

the potential of these techniques

Joe Osborn (ORNL) 26
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Jet Substructure Physics at RHIC

• Measurement of jet mass sensitive to both fragmentation and

hadronization aspects of jet substructure!

• Can study the interplay and connections between both

Joe Osborn (ORNL) 27



Jet Substructure at the LHC

• Searches for dark matter particles

using jet substructure techniques

• Soft drop algorithm recursively

removes soft, wide angle radiation

to better identify tt̄ candidates

• Improves searches for new

particles
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Jet Substructure at the LHC

• Jet girth shows transverse

momentum weighted width

• Indication of how “wide” jets are

based on their hadronic constituents

• Improves understanding of

nonperturbative hadronization

dynamics

Joe Osborn (ORNL) 29
JHEP 1810, 139 (2018)



Central vs. Forward Jets
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• Leverage different rapidity regions

to extract quark-like and gluon-like

data

• Investigate radiation pattern

differences between light quarks and

gluons
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Z+jet

• Why Z+jet?

• Z+jet is predominantly sensitive to

light quark jets

• Nearly all other hadronization

studies at LHC measure inclusive

jets, which are sensitive to

predominantly gluon jets

• Opportunity to study light quark vs.

gluon:

• Hadronization dynamics

• Jet properties

Joe Osborn (ORNL) 31



Z+jet

• Why Z+jet?

• Z+jet is predominantly sensitive to

light quark jets

• Nearly all other hadronization

studies at LHC measure inclusive

jets, which are sensitive to

predominantly gluon jets

• Opportunity to study light quark vs.

gluon:

• Hadronization dynamics

• Jet properties

 [GeV]Z
T

p
0 10 20 30 40 50 60 70 80 90 100

P
ar

to
ni

c 
F

ra
ct

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
qZ→qg

gZ→qq

PYTHIA 8.2
 = 8 TeVs

Forward Z+jet

Joe Osborn (ORNL) 31



Z+jet

• Why Z+jet?

• Z+jet is predominantly sensitive to

light quark jets

• Nearly all other hadronization

studies at LHC measure inclusive

jets, which are sensitive to

predominantly gluon jets

• Opportunity to study light quark vs.

gluon:

• Hadronization dynamics

• Jet properties

 [GeV]jet

T
p

20 30 40 50 60 70 80 90 100
P

ar
to

ni
c 

F
ra

ct
io

n
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

qq→qq

gg→gg

qg→qg

PYTHIA 8.2
 = 8 TeVs

Midrapidity inclusive jet

Joe Osborn (ORNL) 31



Z+jet

• Why Z+jet?

• Z+jet is predominantly sensitive to

light quark jets

• Nearly all other hadronization

studies at LHC measure inclusive

jets, which are sensitive to

predominantly gluon jets

• Opportunity to study light quark vs.

gluon:

• Hadronization dynamics

• Jet properties

 [GeV]Z
T

p
0 10 20 30 40 50 60 70 80 90 100

P
ar

to
ni

c 
F

ra
ct

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
qZ→qg

gZ→qq

PYTHIA 8.2
 = 8 TeVs

Forward Z+jet

Joe Osborn (ORNL) 31



Observables

z =
pjet · ph
|pjet |2

jT =
|ph × pjet |
|pjet |

r =
√

(φh − φjet)2 + (yh − yjet)2

• Measure hadronization observables in

two dimensions

• Longitudinal momentum fraction z

• Transverse momentum jT

• Radial profile r (transverse)

• Reminder - each of these observables

is for a single hadron within the jet

• xE defined as
ptrig
T ·p

assoc
T

|ptrig
T |2
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