Peering Inside Protons and Nuclei

ORNL Seminar

Joe Osborn University of Michigan

February 18, 2019

- 1. Introduction to the structure of the proton
- 2. Experimental facilities
- 3. Software challenges particle physicists face

- Symbolic beginning of particle physics - Rutherford gold foil scattering
- Most particles go through the foil, but some scatter at very large angles

- Symbolic beginning of particle physics - Rutherford gold foil scattering
- Most particles go through the foil, but some scatter at very large angles
- Atoms are mostly empty space, with a dense core at the middle!

• The next decades saw experimentalists go smaller and smaller...

- The next decades saw experimentalists go smaller and smaller...
- In the 1960's, physicists at the Stanford Linear Accelerator found electrons scatter off subcomponents of protons

- The next decades saw experimentalists go smaller and smaller...
- In the 1960's, physicists at the Stanford Linear Accelerator found electrons scatter off subcomponents of protons
- Protons have constituents, generically called "partons"
- 8 orders of magnitude smaller than Rutherford (!!)

- Conventional view of the atom
- Protons and neutrons composed of three quarks
- Quarks, protons, neutrons held together by gluons

- Conventional view of the atom
- Protons and neutrons composed of three quarks
- Quarks, protons, neutrons held together by gluons
- "Strong" force counteracts repelling force of electromagnetic force

Confinement

- However, quarks and gluons are confined within protons
- Impossible to observe a free quark or gluon!

Confinement

- However, quarks and gluons are confined within protons
- Impossible to observe a free quark or gluon!
- When they get pulled apart, strong force becomes stronger and new particles can be produced from $E = mc^2$

So how do we study quarks if they can never be observed freely??

The only way physicists know how - smashing them into each other

abstrusregoose.com

High Energy Proton-Proton Collisions

- Proton-proton collisions "schematically" drawn out like this example
- A quark interacts with another quark via the exchange of a gluon

High Energy Proton-Proton Collisions

- Proton-proton collisions
 "schematically" drawn out like this example
- A quark interacts with another quark via the exchange of a gluon
- Gluon "mediates" strong interaction
- Final-state quark then fragments into many other particles via *E* = mc² (confinement!)
 - This is called a jet spray of particles resulting from a quark or gluon that gets ripped out of the proton

- Proton structure is simple 3 quarks confined within proton "radius"
 - This warrants another talk!

- Proton structure is *complicated*
- We now know that there are many, many quarks and gluons within the proton

- Proton structure is *complicated*
- We now know that there are many, many quarks and gluons within the proton
- Each of them has a quantum mechanical spin (magnetic property), complicating things further

- Proton structure is *complicated*
- We now know that there are many, many quarks and gluons within the proton
- Each of them has a quantum mechanical spin (magnetic property), complicating things further
- How do all of these particles combine together to form one of *the* most basic building blocks of the universe?

- The last two decades have seen strong force research push towards measurements of quark and gluon dynamics
- What does the proton look like in terms of the quarks and gluons inside of it?
 - Position (2D)
 - Momentum (3D)
 - Quark flavor content
 - Spin
 - ...

The LHC and RHIC

The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland)

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (New York)

The LHC and RHIC

The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland)

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (New York)

Experimental Facilities

- LHCb measures electrons, photons, muons, and hadrons (strongly interacting particles)
- Experiment is several stories tall!
- International collaboration of \sim 900 people (not all shown in picture)

Experimental Facilities

- LHCb measures electrons, photons, muons, and hadrons (strongly interacting particles)
- Experiment is several stories tall!
- International collaboration of \sim 900 people (not all shown in picture)

- (s)PHENIX measures photons, electrons, and hadrons
- International collaboration of ~ 200 people

Experimental Facilities

- LHCb measures electrons, photons, muons, and hadrons (strongly interacting particles)
- Experiment is several stories tall!
- International collaboration of \sim 900 people (not all shown in picture)

- (s)PHENIX measures photons, electrons, and hadrons
- International collaboration of ~ 200 people

Experimental Collaborations

LHCb collaboration

R. Aaij²⁸, C. Abellán Beteta⁴⁶, B. Adeva⁴³, M. Adinolfi⁵⁰, C.A. Aidala⁷⁸, Z. Ajaltouni⁶ S. Akar⁶¹, P. Albicocco¹⁹, J. Albrecht¹¹, F. Alessio⁴⁴, M. Alexander⁵⁵, A. Alfonso Albero⁴² G. Alkhazov³⁴, P. Alvarez Cartelle⁵⁷, A.A. Alves Jr⁴³, S. Amato², S. Amerio²⁴, Y. Amhis⁸ L. An¹⁸, L. Anderlini¹⁸, G. Andreassi⁴⁵, M. Andreotti¹⁷, J.E. Andrews⁶², F. Archilli²⁸, P. d'Argent¹³, J. Arnau Romeu⁷, A. Artamonov⁴¹, M. Artuso⁶³, K. Arzymatov³⁸, E. Aslanides⁷ M. Atzeni⁴⁶, B. Audurier²³, S. Bachmann¹³, J.J. Back⁵², S. Baker⁵⁷, V. Balagura^{8,b} W. Baldini¹⁷, A. Baranov³⁸, R.J. Barlow⁵⁸, G.C. Barrand⁸, S. Barsuk⁸, W. Barter⁵⁸, M. Bartolini²⁰, F. Baryshnikov⁷⁴, V. Batozskaya³², B. Batsukh⁶³, A. Battig¹¹, V. Battista⁴⁵ A. Bay⁴⁵, J. Beddow⁵⁵, F. Bedeschi²⁵, I. Bediaga¹, A. Beiter⁶³, L.J. Bel²⁸, S. Belin²³, N. Beliy⁶⁶ V. Bellee⁴⁵, N. Belloli^{21,i}, K. Belous⁴¹, I. Belyaev³⁵, E. Ben-Haim⁹, G. Bencivenni¹⁹ S. Benson²⁸, S. Beranek¹⁰, A. Berezhnov³⁶, B. Bernet⁴⁶, D. Berninghoff¹³, E. Bertholet⁹ A. Bertolin²⁴, C. Betancourt⁴⁶, F. Betti^{16,44}, M.O. Bettler⁵¹, M. van Beuzekom²⁸ Ia. Bezshyiko⁴⁶, S. Bhasin⁵⁰, J. Bhom³⁰, M.S. Bieker¹¹, S. Bifani⁴⁹, P. Billoir⁹, A. Birnkraut¹¹, A. Bizzeti^{18,0}, M. Bjørn⁵⁹, M.P. Blago⁴⁴, T. Blake⁵², F. Blanc⁴⁵, S. Blusk⁶³, D. Bobulska⁵⁵ V. Bocci²⁷, O. Boente Garcia⁴³, T. Boettcher⁶⁰, A. Bondar^{40,x}, N. Bondar³⁴, S. Borghi^{58,44} M. Borisyak³⁸, M. Borsato⁴³, M. Boubdir¹⁰, T.J.V. Bowcock⁵⁶, C. Bozzi^{17,44}, S. Braun¹³ M. Brodski⁴⁴, J. Brodzicka³⁰, A. Brossa Gonzalo⁵², D. Brundu^{23,44}, E. Buchanan⁵⁰ A. Buonaura⁴⁶, C. Burr⁵⁸, A. Bursche²³, J. Buytaert⁴⁴, W. Byczynski⁴⁴, S. Cadeddu²³ H. Cai⁶⁸, R. Calabrese^{17,g}, R. Calladine⁴⁹, M. Calvi^{21,i}, M. Calvo Gomez^{42,m}, A. Camboni^{42,m}, P. Campana¹⁹, D.H. Campora Perez⁴⁴, L. Capriotti¹⁶, A. Carbone^{16,e}, G. Carboni²⁶, R. Cardinale²⁰, A. Cardini²³, P. Carniti^{21,i}, K. Carvalho Akiba², G. Casse⁵⁶, M. Cattaneo⁴⁴ G. Cavallero²⁰, R. Cenci^{25,p}, D. Chamont⁸, M.G. Chapman⁵⁰, M. Charles⁹, Ph. Charpentier⁴⁴ G. Chatzikonstantinidis⁴⁹, M. Chefdeville⁵, V. Chekalina³⁸, C. Chen³, S. Chen²³, S.-G. Chitic⁴⁴ V. Chobanova⁴³, M. Chrzaszcz⁴⁴, A. Chubykin³⁴, P. Ciambrone¹⁹, X. Cid Vidal⁴³, G. Ciezarek⁴⁴, F. Cindolo¹⁶, P.E.L. Clarke⁵⁴, M. Clemencic⁴⁴, H.V. Cliff⁵¹, J. Closier⁴⁴ V. Coco⁴⁴, J.A.B. Coelho⁸, J. Cogan⁷, E. Cogneras⁶, L. Cojocariu³³, P. Collins⁴⁴, T. Colombo⁴⁴ A. Comerma-Montells¹³, A. Contu²³, G. Coombs⁴⁴, S. Coquereau⁴², G. Corti⁴⁴, M. Corvo^{17,9} C.M. Costa Sobral⁵², B. Couturier⁴⁴, G.A. Cowan⁵⁴, D.C. Craik⁶⁰, A. Crocombe⁵² M. Cruz Torres¹, R. Currie⁵⁴, C. D'Ambrosio⁴⁴, F. Da Cunha Marinho², C.L. Da Silva⁷⁹ E. Dall'Occo²⁸, J. Dalseno^{43,v}, A. Danilina³⁵, A. Davis⁵⁸, O. De Aguiar Francisco⁴⁴ K. De Bruyn⁴⁴, S. De Capua⁵⁸, M. De Cian⁴⁵, J.M. De Miranda¹, L. De Paula², M. De Serio^{15,d} P. De Simone¹⁹, C.T. Dean⁵⁵, W. Dean⁷⁸, D. Decamp⁵, L. Del Buono⁹, B. Delanev⁵¹, H.-P. Dembinski¹², M. Demmer¹¹, A. Dendek³¹, D. Derkach³⁹, O. Deschamps⁶, F. Desse⁸ F. Dettori⁵⁶, B. Dev⁶⁹, A. Di Canto⁴⁴, P. Di Nezza¹⁹, S. Didenko⁷⁴, H. Dijkstra⁴⁴, F. Dordei²³, M. Dorigo^{44,y}, A. Dosil Suárez⁴³, L. Douglas⁵⁵, A. Dovbnva⁴⁷, K. Dreimanis⁵⁶, L. Dufour²⁸ G. Dujany⁹, P. Durante⁴⁴, J.M. Durham⁷⁹, D. Dutta⁵⁸, R. Dzhelvadin^{41,†}, M. Dziewiecki¹³, A. Dziurda³⁰, A. Dzvuba³⁴, S. Easo⁵³, U. Egede⁵⁷, V. Egorvchev³⁵, S. Eidelman^{40,x} S. Eisenhardt⁵⁴, U. Eitschberger¹¹, R. Ekelhof¹¹, L. Eklund⁵⁵, S. Elv⁶³, A. Ene³³, S. Escher¹⁰ S. Esen²⁸, T. Evans⁶¹, A. Falabella¹⁶, N. Farley⁴⁹, S. Farry⁵⁶, D. Fazzini^{21,44,4} P. Fernandez Declara⁴⁴, A. Fernandez Prieto⁴³, F. Ferrari¹⁶, L. Ferreira Lopes⁴⁵ F. Ferreira Rodrigues², M. Ferro-Luzzi⁴⁴, S. Filippov³⁷, R.A. Fini¹⁵, M. Fiorini^{17,g}, M. Firlei³¹, C. Fitzpatrick⁴⁵, T. Fiutowski³¹, F. Fleuret^{8,b}, M. Fontana⁴⁴, F. Fontanelli^{20,b}, R. Forty⁴⁴ V Franco Lima⁵⁶ M Frank⁴⁴ C Frei⁴⁴ I Fu²²d W Funk⁴⁴ C Förher⁴⁴ M Fén⁴⁴ E. Gabriel⁵⁴, A. Gallas Torreira⁴³, D. Galli^{16,e}, S. Gallorini²⁴, S. Gambetta⁵⁴, Y. Gan³ M. Gandelman², P. Gandini²², Y. Gao³, L.M. Garcia Martin⁷⁶, B. Garcia Plana⁴³, J. García Pardiñas⁴⁶, J. Garra Tico⁵¹, L. Garrido⁴², D. Gascon⁴², C. Gaspar⁴⁴, L. Gavardi¹¹, G. Gazzoni⁶, D. Gerick¹³, E. Gersabeck⁵⁸, M. Gersabeck⁵⁸, T. Gershon⁵², D. Gerstel⁷, Ph. Ghez⁵, V. Gibson⁵¹, O.G. Girard⁴⁵, P. Gironella Gironell⁴², L. Giubega³³, K. Gizdov⁵⁴

V.V. Gligorov⁹, D. Golubkov³⁵, A. Golutvin^{57,74}, A. Gomes^{1,a}, I.V. Gorelov³⁶, C. Gotti^{21,i} E. Govorkova²⁸, J.P. Grabowski¹³, R. Graciani Diaz⁴², L.A. Granado Cardoso⁴⁴, E. Graugés⁴², E. Graverini⁴⁶, G. Graziani¹⁸, A. Grecu³³, R. Greim²⁸, P. Griffith²³, L. Grillo⁵⁸, L. Gruber⁴⁴, B.R. Gruberg Cazon⁵⁹, O. Grünberg⁷¹, C. Gu³, E. Gushchin³⁷, A. Guth¹⁰, Yu. Guz^{41,44}, T. Gys⁴⁴, C. Göbel⁶⁵, T. Hadavizadeh⁵⁹, C. Hadiivasiliou⁶, G. Haefeli⁴⁵, C. Haen⁴⁴, S.C. Haines⁵¹, B. Hamilton⁶², X. Han¹³, T.H. Hancock⁵⁹, S. Hansmann-Menzemer¹³, N. Harnew⁵⁹, T. Harrison⁵⁶, C. Hasse⁴⁴, M. Hatch⁴⁴, J. He⁶⁶, M. Hecker⁵⁷, K. Heinicke¹¹, A. Heister¹¹, K. Hennessy⁵⁶, L. Henry⁷⁶, E. van Herwijnen⁴⁴, J. Heuel¹⁰, M. Heß⁷¹ A. Hicheur⁶⁴, R. Hidalgo Charman⁵⁸, D. Hill⁵⁹, M. Hilton⁵⁸, P.H. Hopchev⁴⁵, J. Hu¹³, W. Hu⁶⁹ W. Huang⁶⁶, Z.C. Huard⁶¹, W. Hulsbergen²⁸, T. Humair⁵⁷, M. Hushchyn³⁹, D. Hutchcroft⁵⁶, D. Hynds²⁸, P. Ibis¹¹, M. Idzik³¹, P. Ilten⁴⁹, A. Inglessi³⁴, A. Inyakin⁴¹, K. Ivshin³⁴, R. Jacobsson⁴⁴, J. Jalocha⁵⁹, E. Jans²⁸, B.K. Jashal⁷⁶, A. Jawahery⁶², F. Jiang³, M. John⁵⁰ D. Johnson⁴⁴, C.R. Jones⁵¹, C. Joram⁴⁴, B. Jost⁴⁴, N. Jurik⁵⁹, S. Kandybei⁴⁷, M. Karacson⁴⁴ J.M. Kariuki⁵⁰, S. Karodia⁵⁵, N. Kazeev³⁹, M. Kecke¹³, F. Keizer⁵¹, M. Kelsev⁶³, M. Kenzie⁵¹ T. Ketel²⁹, E. Khairullin³⁸, B. Khanii⁴⁴, C. Khurewathanakul⁴⁵, K.E. Kim⁶³, T. Kirn¹⁰, V.S. Kirsebom⁴⁵, S. Klaver¹⁹, K. Klimaszewski³², T. Klimkovich¹², S. Koliiev⁴⁸, M. Kolpin¹¹ R. Kopecna¹³, P. Koppenburg²⁸, I. Kostiuk^{28,48}, S. Kotriakhova³⁴, M. Kozeiha⁶, L. Kravchuk³⁷, M. Kreps⁵², F. Kress⁵⁷, P. Krokovny^{40,x}, W. Krupa³¹, W. Krzemien³², W. Kucewicz^{30,l} M. Kucharczyk³⁰, V. Kudryaytsey^{40,x}, A.K. Kuonen⁴⁵, T. Kyaratskheliya^{35,44}, D. Lacarrere⁴⁴, G. Lafferty⁵⁸, A. Lai²³, D. Lancierini⁴⁶, G. Lanfranchi¹⁹, C. Langenbruch¹⁰, T. Latham⁵² C. Lazzeroni⁴⁹, R. Le Gac⁷, A. Leflat³⁶, R. Leflevre⁶, F. Lemaitre⁴⁴, O. Lerov⁷, T. Lesiak³⁰, B. Leverington¹³, P.-R. Li^{66,ab}, Y. Li⁴, Z. Li⁶³, X. Liang⁶³, T. Likhomanenko⁷³, R. Lindner⁴⁴ F. Lionetto⁴⁶, V. Lisovskyi⁸, G. Liu⁶⁷, X. Liu³, D. Loh⁵², A. Loi²³, I. Longstaff⁵⁵, J.H. Lopes², G.H. Lovell⁵¹, D. Lucchesi^{24,o}, M. Lucio Martinez⁴³, Y. Luo³, A. Lupato²⁴, E. Luppi^{17,o}. O. Lupton⁴⁴, A. Lusiani²⁵, X. Lyu⁶⁶, F. Machefert⁸, F. Maciuc³³, V. Macko⁴⁵, P. Mackowiak¹¹, S. Maddrell-Mander⁵⁰, O. Maev^{34,44}, K. Maguire⁵⁸, D. Maisuzenko³⁴, M.W. Majewski³¹, S. Malde⁵⁹, B. Malecki⁴⁴, A. Malinin⁷³, T. Maltsev^{40,x}, H. Malvgina¹³, G. Manca^{23,f}, G. Mancinelli⁷, D. Marangotto^{22,q}, J. Maratas^{6,w}, J.F. Marchand⁵, U. Marconi¹⁶ C. Marin Benito⁸, M. Marinangeli⁴⁵, P. Marino⁴⁵, J. Marks¹³, P.J. Marshall⁵⁶, G. Martellotti²⁷, M. Martinelli⁴⁴, D. Martinez Santos⁴³, F. Martinez Vidal⁷⁶, A. Massafferri¹, M. Materok¹⁰ R. Matey⁴⁴, A. Mathad⁵², Z. Mathe⁴⁴, C. Matteuzzi²¹, A. Mauri⁴⁶, E. Maurice^{8,b}, B. Maurin⁴⁵ M. McCann^{57,44}, A. McNab⁵⁸, R. McNulty¹⁴, J.V. Mead⁵⁶, B. Meadows⁶¹, C. Meaux⁷, N. Meinert⁷¹, D. Melnychuk³², M. Merk²⁸, A. Merli^{22,q}, E. Michielin²⁴, D.A. Milanes⁷⁰ E. Milland⁵², M.-N. Minand⁵, L. Minzoni^{17,9}, D.S. Mitzel¹³, A. Mogini⁹, B.D. Moise⁵⁷ T. Momhächer¹¹, I.A. Monroy⁷⁰, S. Monteil⁶, M. Morandin²⁴, G. Morello¹⁹, M.J. Morello^{25,t} O. Morgunova⁷³ J. Moron³¹ A.B. Morris⁷ B. Mountain⁶³ F. Muheim⁵⁴ M. Mukheriee⁶⁹ M. Mulder²⁸, C.H. Murphy⁵⁹, D. Murray⁵⁸, A. Mödden¹¹, D. Müller⁴⁴, J. Müller¹¹, K. Müller⁴⁶, V. Müller¹¹, P. Naik⁵⁰, T. Nakada⁴⁵, R. Nandakumar⁵³, A. Nandi⁵⁹, T. Nanut⁴⁵, I. Nasteva², M. Needham⁵⁴, N. Neri^{22,q}, S. Neubert¹³, N. Neufeld⁴⁴, R. Newcombe⁵⁷, T.D. Nguyen⁴⁵, C. Nguyen-Mau^{45,n}, S. Nieswand¹⁰, R. Niet¹¹, N. Nikitin³⁶, A. Nogay⁷³, N.S. Nolte⁴⁴, D.P. O'Hanlon¹⁶, A. Oblakowska-Mucha³¹, V. Obraztsov⁴¹, S. Ogilyv⁵⁵ R. Oldeman^{23, f}, C.J.G. Onderwater⁷², A. Ossowska³⁰, J.M. Otalora Goicochea², T. Ovsiannikova³⁵, P. Owen⁴⁶, A. Ovanguren⁷⁶, P.R. Pais⁴⁵, T. Paiero^{25,t}, A. Palano¹⁵, M. Palutan¹⁹, G. Panshin⁷⁵, A. Papanestis⁵³, M. Pappagallo⁵⁴, L.L. Pappalardo^{17,g}, W. Parker⁶², C. Parkes^{58,44}, G. Passaleva^{18,44}, A. Pastore¹⁵, M. Patel⁵⁷, C. Patrignani¹⁶ A. Pearce⁴⁴, A. Pellegrino²⁸, G. Penso²⁷, M. Pepe Altarelli⁴⁴, S. Perazzini⁴⁴, D. Pereima³⁵, P. Perret⁶, L. Pescatore⁴⁵, K. Petridis⁵⁰, A. Petrolini^{20,h}, A. Petrov⁷³, S. Petrucci⁵⁴, M. Petruzzo^{22,q}, B. Pietrzyk⁵, G. Pietrzyk⁴⁵, M. Pikies³⁰, M. Pili³⁰, D. Pinci²⁷, J. Pinzino⁴⁴, F. Pisani⁴⁴, A. Piucci¹³, V. Placinta³³, S. Plavfer⁵⁴, J. Plews⁴⁹, M. Plo Casasus⁴³, F. Polci⁹, M. Poli Lener¹⁹, A. Poluektov⁷, N. Polukhina^{74,c}, I. Polvakov⁶³, E. Polvcarpo², G.J. Pomerv⁵⁰

S. Ponce⁴⁴, A. Ponov⁴¹, D. Ponov^{49,12}, S. Poslavskii⁴¹, E. Price⁵⁰, J. Prisciandaro⁴³ C. Prouve⁴³, V. Pugatch⁴⁸, A. Puig Navarro⁴⁶, H. Pullen⁵⁹, G. Punzi^{25,p}, W. Oian⁶⁶, J. Oin⁶⁶ R. Quagliani⁹, B. Quintana⁶, N.V. Raab¹⁴, B. Rachwal³¹, J.H. Rademacker⁵⁰, M. Rama²⁵ M. Ramos Pernas⁴³, M.S. Rangel², F. Ratnikov^{38,39}, G. Raven²⁹, M. Ravonel Salzgeber⁴⁴, M. Reboud⁵, F. Redi⁴⁵, S. Reichert¹¹, A.C. dos Reis¹, F. Reiss⁹, C. Remon Alepuz⁷⁶, Z. Ren³ V. Renaudin⁵⁹, S. Ricciardi⁵³, S. Richards⁵⁰, K. Rinnert⁵⁶, P. Robbe⁸, A. Robert⁹, A.B. Rodrigues⁴⁵, E. Rodrigues⁶¹, J.A. Rodriguez Lopez⁷⁰, M. Roehrken⁴⁴, S. Roiser⁴⁴ A. Rollings⁵⁹, V. Romanovskiv⁴¹, A. Romero Vidal⁴³, J.D. Roth⁷⁸, M. Rotondo¹⁹ M.S. Rudolph⁶³, T. Ruf⁴⁴, J. Ruiz Vidal⁷⁶, J.J. Saborido Silva⁴³, N. Sagidova³⁴, B. Saitta^{23,f} V. Salustino Guimaraes⁶⁵, C. Sanchez Gras²⁸, C. Sanchez Mayordomo⁷⁶, B. Sanmartin Sedes⁴³ R. Santacesaria²⁷, C. Santamarina Rios⁴³, M. Santimaria^{19,44}, E. Santovetti^{26,j}, G. Sarpis⁵⁸, A. Sarti^{19,k}, C. Satriano^{27,s}, A. Satta²⁶, M. Saur⁶⁶, D. Savrina^{35,36}, S. Schael¹⁰ M. Schellenberg¹¹, M. Schiller⁵⁵, H. Schindler⁴⁴, M. Schmelling¹², T. Schmelzer¹¹, B. Schmidt⁴⁴ O. Schneider⁴⁵, A. Schopper⁴⁴, H.F. Schreiner⁶¹, M. Schubiger⁴⁵, S. Schulte⁴⁵, M.H. Schune⁸ R. Schwemmer⁴⁴, B. Sciascia¹⁹, A. Sciubba^{27,k}, A. Semennikov³⁵, E.S. Sepulveda⁹, A. Sergi⁴⁹ N. Serra⁴⁶, J. Serrano⁷, L. Sestini²⁴, A. Seuthe¹¹, P. Sevfert⁴⁴, M. Shapkin⁴¹, Y. Shcheglov^{34,†} T. Shears⁵⁶, L. Shekhtman^{40,x}, V. Shevchenko⁷³, E. Shmanin⁷⁴, B.G. Siddi¹⁷, R. Silva Coutinho⁴⁶, L. Silva de Oliveira², G. Simi^{24,o}, S. Simone^{15,d}, I. Skiba¹⁷, N. Skidmore¹³ T. Skwarnicki⁶³, M.W. Slater⁴⁹, J.G. Smeaton⁵¹, E. Smith¹⁰, I.T. Smith⁵⁴, M. Smith⁵⁷, M. Soares¹⁶, I. Soares Lavra¹, M.D. Sokoloff⁶¹, F.J.P. Soler⁵⁵, B. Souza De Paula², B. Spaan¹¹, E. Spadaro Norella^{22,q}, P. Spradlin⁵⁵, F. Stagni⁴⁴, M. Stahl¹³, S. Stahl⁴⁴, P. Stefko⁴⁵, S. Stefkova⁵⁷, O. Steinkamp⁴⁶, S. Stemmle¹³, O. Stenvakin⁴¹, M. Stenanova³⁴, H. Stevens¹¹ A. Stoechi⁸, S. Stone⁶³, B. Storaci⁴⁶, S. Stracka²⁵, M.E. Stramaglia⁴⁵, M. Straticiuc³³ U. Straumann⁴⁶, S. Strokov⁷⁵, J. Sun³, L. Sun⁶⁸, Y. Sun⁶², K. Swientek³¹, A. Szabelski³² T. Szumlak³¹, M. Szymanski⁶⁶, S. T'Jampens⁵, Z. Tang³, T. Tekampe¹¹, G. Tellarini¹⁷ F. Teubert⁴⁴, E. Thomas⁴⁴, J. van Tilburg²⁸, M.J. Tillev⁵⁷, V. Tisserand⁶, M. Tobin³¹, S. Tolk⁴⁴, L. Tomassetti^{17,g}, D. Tonelli²⁵, D.Y. Tou⁹, B. Tourinho, Jadallah Aoude¹ E. Tournefier⁵, M. Traill⁵⁵, M.T. Tran⁴⁵, A. Trisovic⁵¹, A. Tsaregorodtsev⁷, G. Tuci^{25,p} A. Tully⁵¹, N. Tuning^{28,44}, A. Ukleia³², A. Usachov⁸, A. Ustvuzhanin^{38,39}, U. Uwer¹³ A. Vagner⁷⁵, V. Vagnoni¹⁶, A. Valassi⁴⁴, S. Valat⁴⁴, G. Valenti¹⁶, R. Vazquez Gomez⁴⁴ P. Vazouez Regueiro⁴³, S. Vecchi¹⁷, M. van Veghel²⁸, J.J. Velthuis⁵⁰, M. Veltri^{18,r} G. Veneziano⁵⁹, A. Venkateswaran⁶³, M. Vernet⁶, M. Veronesi²⁸, M. Vesterinen⁵² J.V. Viana Barbosa⁴⁴, D. Vieira⁶⁶, M. Vieites Diaz⁴³, H. Viemann⁷¹, X. Vilasis-Cardona^{42,m}, A. Vitkovskiv²⁸, M. Vitti⁵¹, V. Volkov³⁶, A. Vollhardt⁴⁶, D. Vom Bruch⁹, B. Voneki⁴⁴ A. Vorobvev³⁴, V. Vorobvev^{40,x}, N. Voropaev³⁴, J.A. de Vries²⁸, C. Vázquez Sierra²⁸, R. Waldi⁷¹ J. Walsh²⁵, J. Wang⁴, M. Wang³, Y. Wang⁶⁹, Z. Wang⁴⁶, D.R. Ward⁵¹, H.M. Wark⁵⁶, N.K. Watson⁴⁹, D. Websdale⁵⁷, A. Weiden⁴⁶, C. Weisser⁶⁰, M. Whitehead¹⁰, G. Wilkinson⁵⁹ M. Wilkinson⁶³, I. Williams⁵¹, M.R.J. Williams⁵⁸, M. Williams⁶⁰, T. Williams⁴⁹, F.F. Wilson⁵³ M. Winn⁸, W. Wislicki³², M. Witek³⁰, G. Wormser⁸, S.A. Wotton⁵¹, K. Wyllie⁴⁴, D. Xiao⁶⁹, Y. Xie⁶⁹, A. Xu³, M. Xu⁶⁹, Q. Xu⁶⁶, Z. Xu³, Z. Xu⁵, Z. Yang³, Z. Yang⁶², Y. Yao⁶³ L.E. Yeomans⁵⁶, H. Yin⁶⁹, J. Yu^{59,aa}, X. Yuan⁶³, O. Yushchenko⁴¹, K.A. Zarebski⁴⁹, M. Zavertvaev^{12,c}, D. Zhang⁶⁰, L. Zhang³, W.C. Zhang^{3,z}, Y. Zhang⁴⁴, A. Zhelezov¹³ Y. Zheng⁶⁶, X. Zhu³, V. Zhukov^{10,36}, J.B. Zonneveld⁵⁴, S. Zucchelli¹⁶

• What does a proton-proton collision actually look like?

- How to distinguish particles from one another?
- How to distinguish which are electrons/hadrons/photons etc.?
- ...

- Electromagnetic calorimeters in experiments measure photons and electrons
- Basic idea photons scatter off electrons in materials, which then scatter again, and again...

Electromagnetic Calorimeter Types

sPHENIX Photon Calibration

- Electromagnetic calorimeters in experiments measure photons and electrons
- Basic idea photons scatter off electrons in materials, which then scatter again, and again...
- Collect light yield at the end of this "shower"
- Need to be calibrated and corrected
 - Impossible to collect all of the energy

Electromagnetic Calorimeter Types

- Developed calibration method which accounts for:
 - Nonuniformities in physical calorimeter
 - Energy lost in the shower development
 - Interference from other energy deposits

- Developed calibration method which accounts for:
 - Nonuniformities in physical calorimeter
 - Energy lost in the shower development
 - Interference from other energy deposits
- Crucial for improving detector performance

• Analysis method introduces new correction

- Analysis method introduces new correction
- Previous method required outside information
- My method utilizes only energy deposits left in calorimeter

Resulting Performance of Detector

• Resolution shows improvement with implementation of method (lower \rightarrow better)

Resulting Performance of Detector

• Resolution shows improvement with implementation of method (lower \rightarrow better)

- New method matches previous method which requires outside information (red and black)
- Software package that performs corrections implemented and still used in sPHENIX github repository

 Cross section (σ) is the probability for a particular process to happen

- Cross section (σ) is the probability for a particular process to happen
- Total proton-proton cross section is $\mathcal{O}(millibarns)$

Joe Osborn (UM)

- Cross section (σ) is the probability for a particular process to happen
- Total proton-proton cross section is $\mathcal{O}(millibarns)$
- Processes we are interested in generally have cross sections of O(picobarns) (8 orders of magnitude smaller!)

- Cross section (σ) is the probability for a particular process to happen
- Total proton-proton cross section is $\mathcal{O}(millibarns)$
- Processes we are interested in generally have cross sections of O(picobarns) (8 orders of magnitude smaller!)
- With data rates of O(1) GB per second, it is impossible to keep everything

- Implement "triggers" at the hardware and software level
- Helps pick through data to find the "needle in a haystack"

- Implement "triggers" at the hardware and software level
- Helps pick through data to find the "needle in a haystack"
- Beginning work on software trigger for signatures of high energy quarks
- Implementing in gitlab software repository

- Implement "triggers" at the hardware and software level
- Helps pick through data to find the "needle in a haystack"
- Beginning work on software trigger for signatures of high energy quarks
- Implementing in gitlab software repository

• Iterate over energy deposits in real time, trigger on large, collimated energy deposits

- Data rates of $\mathcal{O}(1)$ GB per second
 - Total data sets of many PB (!)
- Requires significant data grooming/cleaning/parsing...

- Data rates of $\mathcal{O}(1)$ GB per second
 - Total data sets of many PB (!)
- Requires significant data grooming/cleaning/parsing...
- Final data sets analyzed are still generally hundreds of GB, if not many TB

- Data rates of $\mathcal{O}(1)$ GB per second
 - Total data sets of many PB (!)
- Requires significant data grooming/cleaning/parsing...
- Final data sets analyzed are still generally hundreds of GB, if not many TB
- Requires complex analysis packages (each directory has many different classes)

umich-jettools v jet-dev /	Tools / + ~	History	Q Find file	Web IDE	φv
added mis-ID study jdosbo authored 4 days age	, ,			1d9b693c	¢
Name	Last commit			Last	update
analysis_macros	added mis-ID study			4 da	ays ago
options	removed useless import			2 mont	ths ago
src	added a few jet ID variables to reco jets matched to tru	t		1 mor	nth ago
README.md	added checkout instructions			2 mont	ths ago

• Question: how do you go from this image to actually concluding something physical about the structure of the proton??

- Question: how do you go from this image to actually concluding something physical about the structure of the proton??
- Answer: reduce your data rate step-by-step until you have something manageable

- General analysis trunk is the "node tree"
 - Example shown here from sPHENIX, open source on github
- Nodes inherit from PHCompositeNode

List of Nodes in Fun4AllServer: Node Tree under TopNode TOP TOP (PHCompositeNode)/ DST (PHCompositeNode)/ CEMC (PHCompositeNode)/ CLUSTER_POS_COR_CEMC (IO,RawClusterContainer) G4CELL_CEMC (IO,PHG4CellContainer) TOWER_RAW_CEMC (IO,RawTowerContainer) TOWER_RAW_CEMC (IO,RawTowerContainer) TOWER_RAW_CEMC (IO,RawTowerContainer) CLUSTER_CEMC (IO,RawTowerContainer)

- General analysis trunk is the "node tree"
 - Example shown here from sPHENIX, open source on github
- Nodes inherit from PHCompositeNode
- Allows for detector and subdetector classification (e.g. CEMC)

List of Nodes in Fun4AllServer: Node Tree under TopNode TOP TOP (PHCompositeNode)/ DST (PHCompositeNode)/ CEMC (PHCompositeNode)/ CLUSTER_POS_COR_CEMC (IO,RawClusterContainer) G4CELL_CEMC (IO,PHG4CellContainer) TOWER_RAW_CEMC (IO,RawTowerContainer) TOWER_RAW_CEMC (IO,RawTowerContainer) CLUSTER_CEMC (IO,RawTowerContainer) CLUSTER_CEMC (IO,RawTowerContainer)

- General analysis trunk is the "node tree"
 - Example shown here from sPHENIX, open source on github
- Nodes inherit from PHCompositeNode

List of Nodes in Fun4AllServer: Node Tnee under TopNode TOP TOP (PHCompositeNode)/ DST (PHCompositeNode)/ CEMC (PHCompositeNode)/ CLUSTER_POS_COR_CEMC (IO,RawClusterContainer) G4CELL_CEMC (IO,PHG4CellContainer) TOWER_RAW_CEMC (IO,RawTowerContainer) TOWER_RAW_CEMC (IO,RawTowerContainer) TOWER_CALIB_CEMC (IO,RawTowerContainer) CLUSTER_CEMC (IO,RawTowerContainer)

- Allows for detector and subdetector classification (e.g. CEMC)
 - PHCompositeNode has containers (e.g. RawClusterContainer), which is a more general class corresponding to actual physical data

- Develop analysis packages to analyze the NodeTree
- Allows users to loop over the containers of interest

RawClusterContainer::ConstRange begin_end = clusters->getClusters(); RawClusterContainer::ConstIterator clusiter;

```
//loop over the emcal clusters
for (clusiter = begin_end.first;
    clusiter != begin_end.second;
    ++clusiter)
```

```
//get this cluster
RawCluster *cluster = clusiter->second;
```

//get cluster characteristics //this helper class determines the photon characteristics //this helper class determines the photon characteristics //this is important for e.g. eta determination and E_T determination CLHEP::Hep3Vector vertex(vtx-zget_x(), vtx-zget_y(), vtx-zget_z()); CLHEP::Hep3Vector E_vec_cluster = RawClusterUtility::GetECoreVec(*cluster, vertex); clus_genergy = E_vec_cluster.mag();

- Develop analysis packages to analyze the NodeTree
- Allows users to loop over the containers of interest
- Example loop over clusters (energy deposits) in electromagnetic calorimeter for energy calibration method!
- Write selected data out to ROOT trees - organized data tables

RawClusterContainer::ConstRange begin_end = clusters->getClusters(); RawClusterContainer::ConstIterator clusiter;

```
//loop over the emcal clusters
for (clusiter = begin_end.first;
    clusiter != begin_end.second;
    ++clusiter)
```

```
//get this cluster
RawCluster *cluster = clusiter->second;
```

//get cluster characteristics //this helper class determines the photon characteristics //this helper class determines the photon characteristics //this is important for e.g. eta determination and E_T determination CLHEP::Hep3Vector vertex(vtx-yget_x(), vtx-yget_y(), vtx-yget_z()); CLHEP::Hep3Vector E_vec_cluster = RawClusterUtlility::GetECoreVec(*cluster, vertex); clus energy = E vec cluster=.mg();

ROOT: Data Analysis Framework

- Common software tool in particle physics ROOT
- Data analysis package developed at CERN in Geneva, Switzerland (probably by research software engineers...)
 - "A modular scientific software toolkit. It provides all the functionalities needed to deal with big data processing, statistical analysis, visualisation and storage. It is mainly written in C++ but integrated with other languages such as Python and R."

ROOT: Data Analysis Framework

- Common software tool in particle physics ROOT
- Data analysis package developed at CERN in Geneva, Switzerland (probably by research software engineers...)
 - "A modular scientific software toolkit. It provides all the functionalities needed to deal with big data processing, statistical analysis, visualisation and storage. It is mainly written in C++ but integrated with other languages such as Python and R."
- Excellent documentation, tons of tutorials, free download at root.cern.ch - I highly recommend checking it out

- From ROOT trees, one can develop (another) analysis package
- Smaller classes that actually do data analysis, systematic studies...
- This is an additional step in parsing data down to final result

efficiency_rootfiles	adding efficiency rootfiles	3 weeks ago
systematics	removed spurious .C~ files accidentally commi	5 days ago
README.md	updated README	3 weeks ago
analyze_truthmc.C	Updated macros with unfolding and systemati	3 weeks ago
analyze_truthmc.h	Updated macros with unfolding and systemati	3 weeks ago
🖹 cuts.h	Updated macros with unfolding and systemati	3 weeks ago
do_spd_hit_study.C	add a short macro to look at spd hit distributio	2 months ago
do_spd_hit_study.h	add a short macro to look at spd hit distributio	2 months ago
make_constituent_distributions.C	added mis-ID study	5 days ago
make_constituent_distributions.h	added mis-ID study	5 days ago

- Leading group at University of Michigan in new research area
- Brand new code framework within collaboration!
- Documentation important for future graduate student use

TWiki page

A twiki page with some documentation of e.g. ANA note development can be found at the following link

Environment setup

Setting up the environment on lxplus to run the jobs is straightforward. The jobs were run with DaVinci v3677pg, which is the same DaVinci version as the Zjet cross section analysis used. This was chosen to maintain consistency with the previous analysis. The TupleTools under src can be copied into e.g.

Phys/DecayTreeTuple/src/

in your local DaVinci setup. Execute

. LbLogin.sh -c x86_64-slc6-gcc48-opt

to get the proper environment, and then do a make and make install like usual as discussed in e.g. the starterkit tutorial

- Recent push amongst collaboration to better preserve analysis frameworks
- Science out to be reproducible...

make_jet_efficiencies.C	Committing analysis code to QEE repository,
make_jet_efficiencies.h	Committing analysis code to QEE repository,
make_misID_sys.C	automated workflow
make_quad_sum.C	automated workflow
make_systematic_uncertainties.py	automated workflow
make_track_efficiency.C	automated workflow
make_track_efficiency.h	automated workflow
make_trackeff_smooth.C	automated workflow

- Recent push amongst collaboration to better preserve analysis frameworks
- Science out to be reproducible...
- Automated workflow using (python) scripts, which run other macros
- Good for documentation, ease to use, amongst many other things...

make_jet_efficiencies.C	Committing analysis code to QEE repository,	
make_jet_efficiencies.h	Committing analysis code to QEE repository,	
make_misID_sys.C	automated workflow	
make_quad_sum.C	automated workflow	
make_systematic_uncertainties.py	automated workflow	
make_track_efficiency.C	automated workflow	
make_track_efficiency.h	automated workflow	

$\textbf{Analysis} \rightarrow \textbf{Results}$

- Analysis frameworks lead to results which get published
- Physics gets documented in publications, analysis packages are saved in collaboration repositories

Conclusions

- Proton structure research a vibrant field of high energy particle physics
 - Aiming to answer basic fundamental questions about the universe how is the most basic building block of matter composed?
- Major software challenges to overcome in particle physics research
 - Huge data rates and data storage, finding rare processes in MHz data rates
 - Identifying particles in large backgrounds
 - Analysis packages that are reproducible and usable by other members of collaborations
 - Many, many others that I have not discussed
- Ultimately work leads to publications
 - Recent focus within collaborations on analysis preservation and reproducibility

Thank you!

• Many unreferenced figures taken from http://www.particleadventure.org

