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Rutherford’s Gold Scattering

• Symbolic beginning of particle

physics - Rutherford gold foil

scattering

• Most particles go through the foil,

but some scatter at very large

angles

• Atoms are mostly empty space,

with a dense core at the middle!
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Atomic Scales

• The next decades saw

experimentalists go smaller and

smaller...

• In the 1960’s, physicists at the

Stanford Linear Accelerator found

electrons scatter off subcomponents

of protons

• Protons have constituents,

generically called “partons”

• 8 orders of magnitude smaller than

Rutherford (!!)
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Modern Structure of Atom

Joe Osborn (UM) 4

• Conventional view of the atom

• Protons and neutrons composed of

three quarks

• Quarks, protons, neutrons held

together by gluons

• “Strong” force counteracts repelling

force of electromagnetic force
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Confinement

• However, quarks and gluons are

confined within protons

• Impossible to observe a free quark

or gluon!

• When they get pulled apart, strong

force becomes stronger and new

particles can be produced from

E = mc2
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So how do we study quarks if they can never

be observed freely??
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The only way physicists know how - smashing

them into each other
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High Energy Proton-Proton Collisions

• Proton-proton collisions

“schematically” drawn out like this

example

• A quark interacts with another

quark via the exchange of a gluon

• Gluon “mediates” strong interaction

• Final-state quark then fragments

into many other particles via

E = mc2 (confinement!)

• This is called a jet - spray of

particles resulting from a quark or

gluon that gets ripped out of the

proton

Joe Osborn (UM) 7
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“Modern” Structure of Atom

• Proton structure is simple - 3

quarks confined within proton

“radius”

• This warrants another talk!
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Modern Structure of Atom

• Proton structure is complicated

• We now know that there are many,

many quarks and gluons within the

proton

• Each of them has a quantum

mechanical spin (magnetic

property), complicating things

further

• How do all of these particles

combine together to form one of

the most basic building blocks of

the universe?
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Multidimensional Proton Structure

• The last two decades have seen strong force research push towards

measurements of quark and gluon dynamics

• What does the proton look like in terms of the quarks and gluons

inside of it?

• Position (2D)

• Momentum (3D)

• Quark flavor content

• Spin

• . . .
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The LHC and RHIC

The Large Hadron Collider (LHC) at

CERN (Geneva, Switzerland)

The Relativistic Heavy Ion Collider

(RHIC) at Brookhaven National Lab

(New York)
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Experimental Facilities

• LHCb measures electrons, photons,

muons, and hadrons (strongly

interacting particles)

• Experiment is several stories tall!

• International collaboration of ∼ 900

people (not all shown in picture)

• (s)PHENIX measures photons,

electrons, and hadrons

• International collaboration of ∼ 200

people
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Experimental Collaborations
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Challenges in Particle Physics

Joe Osborn (UM) 14

• What does a proton-proton collision actually look like?

• How to distinguish particles from one another?

• How to distinguish which are electrons/hadrons/photons etc.?

• . . .
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sPHENIX Photon Calibration

• Electromagnetic calorimeters in

experiments measure photons and

electrons

• Basic idea - photons scatter off

electrons in materials, which then

scatter again, and again. . .

• Collect light yield at the end of this

“shower”

• Need to be calibrated and corrected

• Impossible to collect all of the

energy
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sPHENIX Photon Calibration

• Developed calibration method which accounts for:

• Nonuniformities in physical calorimeter

• Energy lost in the shower development

• Interference from other energy deposits

• Crucial for improving detector performance
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New Method: Position Recalibration

Before Recalibration

Cluster eta position
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• Analysis method introduces new correction

• Previous method required outside information

• My method utilizes only energy deposits left in calorimeter
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Resulting Performance of Detector

Input energy (GeV)
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• Resolution shows improvement with

implementation of method

(lower → better)

• New method matches previous

method which requires outside

information (red and black)

• Software package that performs

corrections implemented and still

used in sPHENIX github repository
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Challenges in Particle Physics

• Cross section (σ) is the probability

for a particular process to happen

• Total proton-proton cross section is

O(millibarns)

• Processes we are interested in

generally have cross sections of

O(picobarns) (8 orders of

magnitude smaller!)

• With data rates of O(1) GB per

second, it is impossible to keep

everything

Joe Osborn (UM) 19
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Physics Triggers

• Implement “triggers” at the

hardware and software level

• Helps pick through data to find the

“needle in a haystack”

• Beginning work on software trigger

for signatures of high energy quarks

• Implementing in gitlab software

repository

• Iterate over energy deposits in real time, trigger on large, collimated

energy deposits
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Challenges in Particle Physics

Joe Osborn (UM) 21

• Data rates of O(1) GB per second

• Total data sets of many PB (!)

• Requires significant data grooming/cleaning/parsing...

• Final data sets analyzed are still generally hundreds of GB, if not

many TB

• Requires complex analysis packages (each directory has many

different classes)
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Challenges in Particle Physics

• Question: how do you go from this image to actually concluding

something physical about the structure of the proton??

• Answer: reduce your data rate step-by-step until you have something

manageable
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Analysis Frameworks

• General analysis trunk is the “node

tree”

• Example shown here from

sPHENIX, open source on github

• Nodes inherit from

PHCompositeNode

• Allows for detector and subdetector

classification (e.g. CEMC)

• PHCompositeNode has containers (e.g. RawClusterContainer),

which is a more general class corresponding to actual physical data
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Analysis Frameworks

• Develop analysis packages to

analyze the NodeTree

• Allows users to loop over the

containers of interest

• Example - loop over clusters

(energy deposits) in

electromagnetic calorimeter

for energy calibration

method!

• Write selected data out to

ROOT trees - organized data

tables
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ROOT: Data Analysis Framework

• Common software tool in particle physics - ROOT

• Data analysis package developed at CERN in Geneva, Switzerland

(probably by research software engineers...)

• “A modular scientific software toolkit. It provides all the

functionalities needed to deal with big data processing, statistical

analysis, visualisation and storage. It is mainly written in C++ but

integrated with other languages such as Python and R.”

• Excellent documentation, tons of tutorials, free download at

root.cern.ch - I highly recommend checking it out
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Analysis Frameworks

• From ROOT trees, one can develop (another) analysis package

• Smaller classes that actually do data analysis, systematic studies. . .

• This is an additional step in parsing data down to final result

Joe Osborn (UM) 26



Analysis Frameworks

• Leading group at University of Michigan in new research area

• Brand new code framework within collaboration!

• Documentation important for future graduate student use
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Analysis Frameworks
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• Recent push amongst collaboration to better preserve analysis

frameworks

• Science out to be reproducible...

• Automated workflow using (python) scripts, which run other macros

• Good for documentation, ease to use, amongst many other things. . .
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Analysis → Results

• Analysis frameworks lead to results

which get published

• Physics gets documented in

publications, analysis packages are

saved in collaboration repositories
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Conclusions

• Proton structure research a vibrant field of high energy particle

physics

• Aiming to answer basic fundamental questions about the universe -

how is the most basic building block of matter composed?

• Major software challenges to overcome in particle physics research

• Huge data rates and data storage, finding rare processes in MHz

data rates

• Identifying particles in large backgrounds

• Analysis packages that are reproducible and usable by other members

of collaborations

• Many, many others that I have not discussed

• Ultimately work leads to publications

• Recent focus within collaborations on analysis preservation and

reproducibility
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Thank you!
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