Parton Dynamics in High Energy Proton-Proton Collisions at PHENIX

Joe Osborn

PGSS Seminar

July 8 2015

Outline

- Quantum Chromodynamics
- Nucleon Landscape
- Transverse partonic motion
- Relativistic Heavy Ion Collider and PHENIX Experiment
- MPC-EX detector upgrade

The Standard Model

- 4 forces in physics
 - Weak
 - Electric
 - Gravitational
 - Strong
- Quarks and gluons interact strongly
- Quantum Chromodynamics

・ロト ・ 日 ト ・ ヨ ト ・

QCD

Electron Scattering: A clean channel

- Deep Inelastic Scattering (DIS) revealed inner structure to proton
- Structure at low momentum fraction *x*

$$x=rac{
ho_{quark}}{
ho_{proton}}$$
 $Q^2=-q^2=(
ho_1-
ho_3)^2$

< ロト < 同ト < ヨト < ヨト

Nucleon Landscape

- ∢ ∃ ▶

Parton Distribution Functions

- Non-perturbative functions
- Require experimental input, can't just calculate!

- **4 ∃ ≻** 4

arXiv:hep-ex/0911.884

Image: Image:

Fragmentation Functions

- Similar theoretical footing with Parton Distribution Functions
- Non-perturbative functions
- Probability of a quark fragmenting to a particular hadron

$$z = \frac{p_{hadron}}{p_{quark}}$$

QCD Factorization

- Non-perturbative (long scale) parton distribution functions f₁, f₂ and fragmentation functions D^h_{q3}
- Perturbative (short scale) calculable partonic hard scattering cross section $\hat{\sigma}$
- Convolution of three gives total cross section

$$\sigma \propto f_{q_1}(x_2, Q^2) \otimes f_{q_2}(x_2, Q^2) \otimes \hat{\sigma}_{q_1q_2 \rightarrow q_3} \otimes D^h_{q_3}(z_{q_3}, Q^2)$$

So what?

- We seem to have a good understanding of what's going on in the proton, right?
- Parton distrbution functions describe initial partonic states
- Fragmentation functions describe final hadronizing states
- Theorists calculate partonic hard scattering cross section in perturbative QCD
- The convolution of these three things gives us our cross section
- So, let's pack up and go home. QCD good to go!

Transverse Single Spin Asymmetries (TSSA)

- Observable that we measure
- Measure final state particles

•
$$\eta$$

(1) $\sigma^{\uparrow}(\phi) -$

Transverse Single Spin Asymmetries

Perturbative QCD Calculation

$$A_N \propto rac{m_q}{\sqrt{s}} pprox 0.1\%$$

Kane, Pumplin, Repko (1978)

QCD Experiment

What about in REAL perturbative QCD Regime?

Asymmetry survives well into perturbative QCD regime

• Perturbative QCD wrong??

Figure by Christine Aidala

Transverse Momentum Dependent Parton Distribution Functions

- Perturbative QCD not wrong, just need to look deeper...
- What about transverse motion of quarks?
- Traditional parton distribution functions only consider collinear quark motion

- Transverse Momentum Dependent parton distribution function proposed by Dennis Sivers in 1991
 - Relation between inital state L_q and S_p?

 $f(x,Q^2) \to f(x,k_T;Q^2)$

- Transverse Momentum Dependent Fragmentation Function proposed by John Collins in 1993
 - Relation between final state S_q and L_h ?

 $D^h_q(z,Q^2) \rightarrow D^h_z(z,p_T;Q^2)$

Intrinsic Transverse Momentum

- Two leading order processes above give photon+jet
- At leading order photon+jet emerge exactly back to back
- Smearing of away side jet indicates intrinsic partonic k_T

PRL 81,2642

Relativistic Heavy Ion Collider (RHIC)

(日) (同) (三) (三)

PHENIX

- Mid-rapidity ($|\eta| < 0.35$)
 - EMCal
 - Charged Particle Tracking

• • • • • • • • • • • •

- Forward rapidity $(3.1 < |\eta| < 3.8)$
 - MPC
 - New upgrade MPC-EX

∃ →

PHENIX Central Arms

- Central arm calorimetry gives access to direct photon production
- Correlations analyzed in both p + p and Au + Au collisions

PRD 82, 072001

PHENIX Central Arms

- PHENIX results at $\sqrt{s} = 200 \text{ GeV}$
- Direct photon and π^0 triggers consistent

PRD 82, 072001

PHENIX Forward Calorimetry

- Effects from spin momentum correlations are known to be large in forward region
- In 2007 PHENIX installed MPC at $3.1 < |\eta| < 3.8$

PRD 90, 072008

What Now?

- Evidence accumulated for partonic transverse dynamics abundant
- Where do we go from here?
- We want to better understand the underlying mechanisms that result in these transverse effects
- Problem: How do we differentiate initial state effects of transverse momentum from messy final state hadronization effects?

The Golden Channel

- Direct photons aptly named "the golden channel"
- Come directly from hard scattering → Contain partonic information
- No color charge → No hadronization effects!
- Problem: Background due to $\pi^0 \rightarrow \gamma \gamma$

MPC-EX

- Solution: A pre-shower extension to the existing MPC, cleverly named the MPC-EX
- Allows for π^0 reconstruction up to 80 GeV
- Thus, much higher background rejection

MPC-EX

- Many measurements to make!
 - π⁰ and η transverse single spin asymmetry over large x_F range
 - Direct photon transverse single spin asymmetry
- MPC-EX just finished taking first data set
- $\sqrt{s} = 200 \text{ GeV}$ transversely polarized p + p and p + Au runs

Summary

- The most basic building block of matter is actually pretty complicated!
 - 3 valence quark picture only accurate in certain momentum regimes
 - Partons carry some intrinsic transverse momentum
 - On top of that, incredibly large spin momentum correlations are seen
- PHENIX experiment at RHIC
 - RHIC has unique capability to polarize proton beams
 - PHENIX calorimetry in place to measure effects from partonic dynamics
- MPC-EX
 - New pre-shower detector to improve π^0 detection and rejection for direct photons
 - Just finished taking data for first time!

Thank You!

3

・ロト ・ 日 ・ ・ ヨ ・ ・

Back Up

3

・ロト ・ 日 ・ ・ ヨ ・ ・

996

Measuring Fragmentation Functions

$$\sigma^{e^+e^-
ightarrow hX} \propto \sum \sigma^{e^+e^-
ightarrow qar{q}} imes (D^h_q + D^H_{ar{q}})$$

Statistical Subtraction Method

Joe Osborn (PGSS Seminar)

TSSA Methods

$$A_{N} = \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}$$

 Measure particle production as a function of azimuthal angle and polarization of beam

Keep goin' up

- Asymmetry still non-zero even at $\sqrt{s} = 500 \text{ GeV}$
- Well into perturbative QCD regime
- Perturbative QCD wrong??

TMDs

- Measurements of Sivers
 Function in Semi-Inclusive Deep
 Inelastic Scattering (SIDIS) at
 COMPASS (below) and
 HERMES (right)
- Non-zero!

Universal Functions?

Sivers Sign Change

Brodsky, Hwang, Schmidt, PL B530 (2002) 99 - Collins, PL B536 (2002) 43

An earlier proof that the Sivers asymmetry vanishes because of time-reversal invariance is invalidated by the path-ordered exponential of the gluon field in the operator definition of parton densities. Instead, the time-reversal argument shows that the Sivers asymmetry is reversed in sign in hadron-induced hard processes (e.g., Drell-Yan), thereby violating naive universality of parton densities. Previous phenomenology with time-reversal-odd parton densities is therefore validated.

$$[f_{1T}^{q\perp}]_{\text{SIDIS}} = -[f_{1T}^{q\perp}]_{\text{DY}}$$

Figure from M. Anselmino, Transversity 2014

MPC-EX Detector

The MPC-EX Detector

MPC-EX External Review

∃ →

• • • • • • • • • • • •

MPC-EX Hardware

-