

Jet substructure studies for the EIC

Joe Osborn, ORNL Dillon Fitzgerald, University of Michigan May 21, 2020

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Reminder of Goals

- Short update in Jet/HF meeting on April 27
- Goals are to study basic jet substructure observables, as well as soft drop groomed jets, for inclusive jet production and inclusive HF jet production
- Working with EICSmear package to do fast simulation, so that a number of different detector geometries can be quickly implemented (should they need to be)
- Code is available on github

Reminder of Observables

- Typically, RHIC/LHC analyses use z, j_T , and r as shown here
- Have been used in:
 - Inclusive jet (ATLAS, ALICE, CMS, STAR)
 - Z⁰-jet (LHCb)
 - γ -jet (ATLAS, CMS)

Reminder of Observables

- Can also look at jet substructure in soft drop groomed jets
- Typical soft drop observables are R_g and z_g
- Could look at others also, e.g. jet mass. Suggestions welcome

$$z_g = rac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

$$R_g = \Delta R(p_{T,1}, p_{T,2})$$

Simulation Setup

- Using EICSmear to process events quickly and get ideas of resolution, etc.
- Run PYTHIA 6.4 as implemented in PYTHIA eRHIC, inclusive jet production
- Using steering file which has been tuned to HERA data, available in EICSmear
- At the moment run inclusive events, with $Q_{min}^2 = 9 \text{ GeV}^2$ to collect statistics of high p_T jets
 - Can relax this cut later
- Starting out with \sqrt{s} of 18x275 and 10x100 since these are nominally the highest energies available for ep and eA scattering
- Working in the lab frame for now
 - Breit frame transformation in place, but we are still understanding/interpreting results...

Detector Resolution Specifications

• Use DetectorHandbook smearing file based on EIC Handbook from February

- Implemented into EICSmear by Kolja Kauder (thanks Kolja!)
- All resolution values shown here for reference

Detector	Eta coverage	Resolution
Tracking	$-3.5 < \eta < -2.5$	$\sigma(p)/p\sim 0.1p+2.0\%$
Tracking	$-2.5 < \eta < -1$	$\sigma({\it p})/{\it p}\sim 0.05{\it p}+1\%$
Tracking	$-1 < \eta < 1$	$\sigma({m p})/{m p}\sim 0.05{m p}+0.5\%$
Tracking	$1 < \eta < 2.5$	$\sigma({\it p})/{\it p}\sim 0.05{\it p}+1\%$
Tracking	$2.5 < \eta < 3.5$	$\sigma({m p})/{m p}\sim 0.1{m p}+2\%$
EMCal	$-4.5 < \eta < -2$	$1/\sqrt{E}+1\%$
EMCal	$-2 < \eta < -1$	$8/\sqrt{E}+2\%$
EMCal	$-1 < \eta < 4.5$	$12/\sqrt{E}+2\%$
HCal	$-3.5 < \eta < -1$	$45/\sqrt{E}+6\%$
HCal	$-1 < \eta < 1$	$85/\sqrt{E}+7\%$
HCal	$1 < \eta < 3.5$	$45/\sqrt{E}+6\%$
EMCal EMCal EMCal HCal HCal HCal	$egin{array}{llllllllllllllllllllllllllllllllllll$	$1/\sqrt{E} + 1\%$ $8/\sqrt{E} + 2\%$ $12/\sqrt{E} + 2\%$ $45/\sqrt{E} + 6\%$ $85/\sqrt{E} + 7\%$ $45/\sqrt{E} + 6\%$

Jet Clustering Criteria

Truth Criteria

• At truth event level, require:

 $Q^2_{min} > 16 {
m ~GeV}^2$ 0.01 < y < 0.95 $x_{min} > 10^{-5}$

- Cluster final state particles, excluding scattered electron
- Require $|\eta^{part}| < 3.5$ and $p_T^{part} > 0.25 \text{ GeV}$
- Use R=1 anti-k_T from fastjet

Smeared Criteria

- Impose same truth criteria (e.g. final state, η, p_T requirements)
- Then collect particles as follows:
 - Smeared particles with a nonzero 4-vector (p_x , p_y , p_z , E) are included as is
 - Smeared particles with (p_x, p_y, p_z) = 0 are (neutral) calorimeter clusters
 - Assign momentum based on truth PID
 - Smeared particles with *E* = 0 are tracks that did not have an associated calorimeter energy deposit
 - Assign energy based on truth PID

Event Level Kinematics

• Sanity checks - truth (x, Q^2) distributions look reasonable

• Clear correlation between truth jet p_T and Q^2

Event Kinematic Reconstruction

• Smearing more significant at higher x, smaller y

 Q^2_{reco} [GeV²]

10²

PYTHIA eRHIC ep 18x275 GeV 10⁴

 10^{3}

10²

10

Jet Kinematics

- Lab frame jets produced largely at central and forward rapidities
- Restrict jet to have $|\eta|<$ 2.5 so that jet cone lies in full tracking acceptance
- Good jet p_T reconstruction

Hadronization Kinematics

j_T [GeV]

OAK RIDGE

- Hadronization kinematic reach is mostly limited by lower p_T threshold of particles
- Hadronization observables limited by jet momentum resolution

30

Jet Substructure Kinematics

- Soft drop algorithm applied with $z_{cut}=0.1,\ \beta=0$
- Not sure why z_g show seemingly much worse correlation than other observables. Needs investigating
- R_g mostly well reconstructed
- Keep in mind this is integrated over $p_T > 4$ GeV, so low p_T jets dominate

CAK RIDGE Joe Osborn

- Working on implementing charm jet tagging
- Can tag D^0 mesons within truth jet
 - Will look at capabilities for other D mesons also
- Understanding smeared distributions and *D* tagging-in-jet capabilities within EICSmear

Conclusions

- Software framework for running PYTHIA eRHIC and EICSmear simulations in place
- Analyzing jet substructure and hadronization observables, reconstruction capabilities
- Preliminary looks at jet kinematics, reconstruction, and substructure capabilities today for a generic EIC detector
- To-Do
 - Working on charm jet tagging with a D meson to study D-jet correlations
 - Understand similar kinematic distributions as shown from today in Breit frame
 - Study different jet clustering cases, e.g. not 100% PID (track jets only?)
 - Would like to make some statistical projections for various beam energies
 - Framework in place to provide resolution estimates for jets, etc, to provide to DWGs and quickly implement their suggestions for detector resolutions

Back Up

Jet Reconstruction ϕ and η Kinematics

- Jet ϕ and η well reconstructed across default detector range

Jet Reconstruction Kinematics

- Majority of truth jets have a reconstructed jet match within $\Delta R < 0.2$
- Jet momentum well reconstructed in general perhaps also useful in conjunction with jet p_T for forward jets

Jet Number of Constituents

Soft Drop Kinematics

• Majority of jets already pass default grooming criteria of $z_{cut} = 0.1$ and $\beta = 0$

j_T Kinematics

r Kinematics

- r not reconstructed as well compared to other hadronization observables
- Expected to some degree, because it depends on y rather than η

z Kinematics

