Effects from color entanglement in proton-proton and proton-nucleus collisions

Joe Osborn

University of Michigan

October 23, 2017

Quantum Chromodynamics

- QCD is *the* fundamental gauge theory describing the strong force
- Written in terms of quark and gluon (parton) degrees of freedom
- But we can only directly observe combinations of partons in the laboratory!
- Confinement and the non-Abelian nature of QCD: gluon self coupling and color charge

- Take advantage of running of the strong coupling constant - weak at large energies
- High energy interactions allow us to probe the partonic degrees of freedom
- Allows us to relate the gauge theory degrees of freedom to actual physical observables

QCD Cross Sections

- To account for bound state nature of hadrons, cross sections are factorized
- Nonperturbative parton distribution and fragmentation functions (PDFs and FFs) are used to describe the individual partons within a hadron
- Functions are *nonperturbative*, must be constrained by data!
- Taken to be process independent and uncorrelated

$$\sigma = f_1(x, Q^2) \otimes f_2(x, Q^2) \otimes \frac{d\hat{\sigma}}{dt} \otimes D_q^h(z, Q^2)$$

 $= \frac{p_{parton}}{p_{proton}}$

Mapping the Structure of the Proton

 $\sigma_{e^-+p
ightarrow e^-+h} \propto F_2(Q^2,x)$

- Historically have used semi-inclusive deep-inelastic-scattering (SIDIS) and Drell-Yan (DY) as probes of hadron structure
 - SIDIS: $e^- + p \rightarrow e^- + h$
 - DY: $q + \bar{q} \rightarrow \ell^+ + \ell^-$
- Longitudinal structure of proton in terms of x mapped out over huge range of x and Q²

Multidifferential QCD

- The last two decades have seen QCD push towards measurements of parton dynamics
- Phenomenological calculations now consider internal multidimensional structure
- Experimentalists have benefited from advanced facilities to observe multidimensional observables sensitive to parton dynamics
- What does the proton look like in terms of the quarks and gluons inside of it?
 - Position (2D)
 - Momentum (3D)
 - Flavor
 - Spin
 - Color (!)
- How can we use perturbative tools to learn about the nonperturbative aspects of QCD?

1D vs. 3D Nonperturbative Functions

 Historically nonperturbative functions are approximated as only dependent on the collinear momentum fraction x In reality there must be transverse structure due to the confined nature of the partons and the additional possibility of gluon radiation

• The unintegrated k_T distributions are explicitly dependent on transverse momentum

Parton Distribution Functions: $f(x) \rightarrow f(x, k_T)$

Fragmentation Functions: $D(z) \rightarrow D(z, j_T)$

• We can also add spin into the picture...

J.D. Osborn (UM)

Transverse-Momentum-Dependent PDF Zoo

Transverse-Momentum-Dependent (TMD) PDFs

- N Nucleon
- q Quark
- U Unpolarized
- L Longitudinally polarized
- T Transversely polarized

 8 TMD PDFs describing transverse partonic structure, spin-spin, and spin-momentum correlations!

Image taken from Alexei Prokudin Spin 2016

- In the collinear framework, nonperturbative functions are taken to be uncorrelated, universal, process independent functions
- In the transverse-momentum-dependent framework, it has been necessary to re-check these assumptions
- This has led to very interesting predictions...

Universality in Transverse-Momentum-Dependent Functions

- Sign change in transverse-momentum-dependent PDFs with certain symmetry properties (PT odd) predicted due to initial-state vs. final-state gluon exchange with proton remnants between Drell-Yan and semi-inclusive DIS: process dependent PDF!
- Factorization of transverse-momentum-dependent PDFs and fragmentation functions still predicted to hold in these QED processes

First Measurement of Possible Modified Universality

- Semi-inclusive DIS Sivers asymmetries have been measured, e.g. by HERMES and COMPASS collaborations
- First measurements of Drell-Yan (type) processes just recently reported
- Data support prediction of process dependent transverse-momentum-dependent PDF (although still statistically limited)

J.D. Osborn (UM)

UIUC MEP/HEP Seminar

10/23/2017 11 / 36

• Factorization is still predicted to hold in semi-inclusive DIS and Drell-Yan and the previous example is a check of this

$$\sigma = f(x, k_T, Q^2) \otimes \frac{d\hat{\sigma}}{dt} \otimes D^h_q(z, j_T, Q^2)$$

- What about leading-order QCD processes where a colored quark or gluon is exchanged?
- Color present in both the initial and final state therefore soft gluon exchange possible in both the initial and final state

- Factorization breaking predicted in a transversemomentum-dependent (TMD) framework for $p + p \rightarrow h_1 + h_2$ (PRD 81, 094006 (2010))
- TMD nonperturbative functions no longer defined partons are quantum mechanically correlated via color across colliding hadrons!
- Consequence of soft gluon exchanges in both the initial and final state

- Predicted modified universality of certain TMD PDFs and factorization breaking from same physical process - color flow in action!
- Consequence of QCD as a non-Abelian gauge theory

Collins-Soper-Sterman (CSS) Evolution with Q^2

- CSS evolution first published in 1985. Similar to DGLAP evolution equation, but includes small transverse momentum scale
- Has been used to successfully describe global Drell-Yan and Tevatron Z⁰ cross sections
- Clear qualitative prediction momentum widths sensitive to nonperturbative transverse momentum increase with increasing hard scale
- Due to increased phase space for gluon radiation

J.D. Osborn (UM)

Drell-Yan/Z and Semi-Inclusive DIS in CSS Evolution

- Phenomenological studies confirm that Drell-Yan and semi-inclusive DIS follow theoretical prediction
- The evolution prediction comes directly out of the derivation for transversemomentum-dependent (TMD) factorization
 - If TMD factorization, then CSS evolution. If not CSS evolution, then not TMD factorization!

DY/Z - PLB 633, 710 (2006)

SIDIS - PRD 89, 094002 (2014)

Relativistic Heavy Ion Collider - RHIC at Brookhaven National Laboratory

J.D. Osborn (UM)

PHENIX Detector

- PHENIX central arms
 - $\Delta\phi\sim\pi$
 - |η| <0.35
- Electromagnetic Calorimeter (PbSc/PbGl) provides isolated direct photon and $\pi^0 \rightarrow \gamma \gamma$ detection
- Drift Chamber (DC) and Pad Chambers (PC) provide nonidentified charged hadron detection

- Results from
 - $\sqrt{s} = 510 \text{ GeV } p + p$
 - $\sqrt{s} = 200 \text{ GeV } p + p$
 - $\sqrt{s} = 200 \text{ GeV } p + A$

Angular Correlation Observables

 $p_{out} = p_T^{assoc} \sin \Delta \phi$

$\Delta \phi$ Correlations for π^0 -h[±] and Direct γ -h[±]

Phys. Rev. D 95, 072002 (2017)

- Two jet structure visible for π^0 -h[±], isolation cut at $\Delta \phi \sim 0$ for direct γ -h[±]
- Direct γ -h[±] probes smaller jet energy due to emerging from hard scattering at LO

J.D. Osborn (UM)

$\sqrt{\langle \pmb{p}_{out}^2 angle}$ Extracted from Fits to $\Delta \phi$ Correlations

- $\sqrt{\langle p_{out}^2 \rangle}$ characterizes away-side jet width in momentum space
- Decreases with hard scattering scale p_T^{trig} , opposite of semi-inclusive DIS and Drell-Yan!
- Sensitive to perturbative and nonperturbative k_T and j_T; fits are to entire away-side jet

- *p*_{out} shows two distinct regions: Gaussian and power law
- Gaussian fits clearly fail past ${\sim}1.3$ GeV/c
- Indicates transition from nonperturbative to perturbative k_T and j_T

Phys. Rev. D 95, 072002 (2017)

• Note: Curves are Kaplan and Gaussian fits, not calculations!!

Gaussian Widths of *p*out

- Gaussian widths of pout vs. p_T^{trig} are sensitive to only nonperturbative k_T and j_T
- Widths decrease with hard scale, opposite of semi-inclusive DIS and Drell-Yan!

PYTHIA Event Simulation

- PYTHIA full event p+p simulation replicates the negative slope of the Gaussian widths
- Magnitudes of widths from PYTHIA show ${\sim}15\%$ difference from data despite slope being replicated
- Very surprising PYTHIA doesn't explicitly include transverse-momentumdependent functions

 BUT it does allow initial and final state gluon exchanges, which are the necessary physical mechanisms for factorization breaking

New $\sqrt{s} = 200$ GeV p+p Results

• New $\sqrt{s} = 200 \text{ GeV}$ results allow the nonperturbative momentum widths to be studied as a function of \sqrt{s}

 Could provide information on possible correlations between x and k_T that leads to the decreasing widths

- In 2015 RHIC collided, for the first time ever, $p{+}{\rm Al}$ and $p{+}{\rm Au}$ at $\sqrt{s}=\!200~{\rm GeV}$
- Unique opportunities abound to study correlations as a function of:
 - Number of hadrons in collisions do stronger color fields lead to modified effects?
 - Nuclear size Modification from $p+p \rightarrow p+AI \rightarrow p+Au$?
 - Centrality/multiplicity Do the number of final-state particles affect factorization breaking effects?

$\sqrt{\langle p_{out}^2 \rangle}$ in *p*+Au and *p*+Al

• Reminder: $\sqrt{\langle p_{out}^2 \rangle}$ characterizes away-side jet-width in momentum space

- See larger $\sqrt{\langle p_{out}^2 \rangle}$ in p+A compared to published p+p data
- \bullet Relation to Cronin effect (enhancement at ${\sim}5$ GeV)?? Correlations could provide additional information
- Note: $4 < p_T^{trig} < 8 \otimes 2 < p_T^{assoc} < 6$ within R_{pA} enhancement region

J.D. Osborn (UM)

Gaussian Widths of pout

- Dihadron correlations in p+Au show clear centrality (final-state multiplicity) dependence
- Nonperturbative away-side jet widths larger in more central events
- Effects from k_T broadening? Multiple scattering? Multiple partonic interactions?

0-20% Centrality 20-60% Centrality 60-84% Centrality

Cold Nuclear Matter Effects: Centrality Dependence on Nucleus Size

- Centrality dependence in *p*+Au clearly seen
- Is there a similar dependence in *p*+Al?

Cold Nuclear Matter Effects: Centrality Dependence on Nucleus Size

- Centrality dependence in p+AI as well, although not as strong as in p+Au
- Central and peripheral p+AI do not show as big a difference as central and peripheral in p+Au
- Central p+Al similar to peripheral p+Au multiplicity dependence

p+AI points shifted for visibility

Relation to High Multiplicity?

- Surprising results from RHIC and LHC show novel phenomena in high multiplicity p+p and p+A
- What role does color play in these measurements?
- p+A measurements sensitive to color entanglement also probing multiple partonic interaction effects

Relation to Huge Transverse Single Spin Asymmetries?

- Transverse single spin asymmetries show up to 40% left-right asymmetry in p+p collisions
- Only $\sim 5\%$ in semi-inclusive DIS
- Effects from color contributing?

Rev. Mod. Phys. 85, 655 (2013)

Relation to Huge Transverse Single Spin Asymmetries?

- Correlations sensitive to color entanglement do not follow perturbative evolution
- Transverse single spin asymmetries are perturbatively predicted to go to 0 with increasing p_T
- Nonzero (${\sim}7\%$) asymmetries have been measured up to $p_T \sim 7$ GeV
- Transverse single spin asymmetries seem to not follow perturbative evolution as well

Relation to LHC Color Coherence Measurements

 ATLAS/CMS find that additional radiated jet is more likely to be found towards opposite rapidity

J.D. Osborn (UM)

Future Color Entanglement Measurements

- Color interactions can only be probed in hadronic interactions
- We must measure them before the future Electron Ion Collider is constructed
- New RHIC experiment sPHENIX will be a dedicated jet detector sensitive to nonperturbative parton dynamics

Estimated γ -jet Statistical Precision

- γ -jet is the ideal channel limits color flow possibilities with sensitivity to only k_T
- RHIC kinematics important need high p_T processes which still have sensitivity to the nonperturbative physics
- sPHENIX will have excellent statistical precision for γ-jet at RHIC for the first time
- Will extend PRD 95, 072002 (2017) to study x dependence as well as role of fragmentation with tracking capabilities

Conclusions

- Theory and measurements are now probing parton dynamics QCD color in action!
- Nonperturbative momentum widths from PHENIX *p*+*p* and *p*+A show opposite behavior from Collins-Soper-Sterman hard scale evolution, which comes from transverse-momentum-dependent factorization theorem
- p+A correlations show multiplicity dependence potential relations to multiple scattering effects and multiple partonic interaction physics now being probed at both RHIC and the LHC
- sPHENIX will be ideal facility to study nonperturbative photon-jet effects in *p*+*p* and *p*+A collisions
- Synthesizing information from many different collision systems is joining historically separate fields it's all QCD!

Back Up

\sqrt{s} =200 GeV Results from RHIC

- Previous PHENIX result at \sqrt{s} =200 GeV to lower p_T^{trig} (PRD 81, 012002 (2010))
- Shows $\sqrt{\langle p_{out}^2\rangle}$ over lower range of ρ_T^{trig}
- Also can plot away-side width in angular space same trend over large range of p_T^{trig}

$\langle z_T \rangle$ with Gaussian Widths

- $\langle z_T \rangle \ p_T^{trig}$ correction was also applied to Gaussian widths vs. p_T^{trig}
- \$\langle z_T \rangle\$ more or less amounts to a scale factor of 2 difference in the slope

$$\sqrt{\langle p_{out}^2
angle}$$
 vs. p_T^{jet}

• Examined $\sqrt{\langle p_{out}^2 \rangle}$ as a function of p_T^{jet} as well

- $p_T^{jet} = p_T^{trig}$ for direct photons
- $p_T^{jet} = p_T^{trig} / \langle z_T \rangle$ for π^0 s, with $\langle z_T \rangle$ estimated using PYTHIA • $\langle z_T \rangle = \frac{p_T^{trig}}{p_T^{trig}}$

• The $\sqrt{\langle p_{out}^2 \rangle}$ distributions almost form a continuous function?

- *p*+Au *p_{out}* distributions in both π⁰ − h[±] and γ − h[±] show similar shapes to *p*+*p*
- Gaussian core transitions to power-law shape at large p_{out}
- Limited statistical precision in γh^{\pm} channel, but any centrality dependence could be observed in $\pi^0 h^{\pm}$

PYTHIA Event Simulation

- Can construct pout distributions for direct photons and dihadrons in PYTHIA as well for direct comparison
- PYTHIA replicates the nonperturbative to perturbative transition in the *p_{out}* distributions

PYTHIA p+p Event Simulation

- To make a comparison, used PYTHIA event generator simulation
- PYTHIA reproduces expectation from CSS evolution in Drell-Yan over large range of M_{μμ}

SIDIS and e^+e^- Annihilation Momentum Widths

PRD 61, 014003

Z. Phys. C 21:37

DY/Z and SIDIS in CSS Evolution

- Measurements show that DY and SIDIS follow prediction of CSS evolution
- The CSS evolution equation comes directly out of the derivation for TMD factorization

FNAL fixed target DY

SIDIS Sivers Measurement

- SIDIS Sivers measurement shows ~5% asymmetries
- Smaller than the asymmetries measured in hadronic collisions
- SIDIS only sensitive to final-state effects from gluon exchanges

Phys. Lett. B770 (2017) 138-145

Partonic Contributions to Processes at LO

 π⁰ contribution changes from gluon dominated at low p_T to mix of quark and gluons at high p_T

- Direct photon contribution dominated by QCD Compton scattering at all p_T
- NLO corrections small at midrapidity (Phys. Lett. B 140,87)

Analysis Methods

- Correlated π⁰-h[±] or isolated γ-h[±] are collected and corrected with:
 - Charged hadron efficiency
 - Acceptance correction
- Direct photons undergo additional statistical subtraction to remove decay photon background, estimated with Monte Carlo probability functions
- Isolation and tagging cuts remove decay photon background and NLO fragmentation photons

Probability for a π^0 to decay to a photon which could not be tagged with $5 < p_T < 7$ GeV/c in PHENIX

$$Y_{dir}^{iso} = rac{1}{R_{\gamma}^{iso}-1} \left(R_{\gamma}^{iso} Y_{inc}^{iso} - Y_{dec}^{iso}
ight)$$

PRD 82,072001 (2010) PRC 80,024908 (2009)

Direct Photons and Dihadrons

- Direct photon-hadron and dihadron correlations both predicted to be sensitive to factorization breaking effects in PHENIX
- Assuming factorization, direct photon-hadrons probe three nonperturbative functions, while dihadrons probe four
- Direct photons offer one less avenue for gluon exchange in the final-state: fewer/different effects?

Relation to LHC Color Coherence Measurements

- CMS/ATLAS measure dijet+jet or photon-jet+jet with angular variable β
- β is the angle in φ, η space between the away-side jet and third additional radiated jet
- β ~0 corresponds to jet towards similar rapidity
- $\beta \sim \pi$ corresponds to jet towards opposite beam rapidity

More about Color Coherence

- Radiation "drags" color away from vertex
- Destructive interference occurs away from emitted gluons
- Soft radiation inhibited in certain areas
- Leads to certain regions of phase space where gluons constructively or destructively interfere

- See the following references
 - Phys. Rev. D 50,5562 (1994)
 - Phys. Lett. B 414 (1997) 419-427
 - Dokshitzer, Yuri.
 Basics of Perturbative QCD (Editions Frontieres, 1991)
 Chapters 4,5,9

Extending PHENIX Kinematic Reach

• Central-forward (top) and central-central (bottom) γ -jet x_1, x_2 reach at $\sqrt{s} = 510$ GeV. Red triangle indicates x_1 - x_2 reach of PHENIX PRD 95, 072002