Recent Experimental Results on QCD Factorization Breaking of Nonperturbative Functions

Joe Osborn University of Michigan

Based on work in arXiv:1609.04769, submitted to Phys. Rev. D

November 21, 2016

- Why study the 3-D structure of nucleon
- Physics in the transverse momentum dependent framework
- RHIC, PHENIX, and two particle angular correlations
- Recent results on factorization breaking
- Future factorization breaking measurements

Mapping the Structure of the Proton

- Historically have used semi-inclusive deep-inelastic-scattering (SIDIS) and Drell-Yan (DY) as probes of hadron structure
- SIDIS measurements showed there is structure to the proton
- Longitudinal structure of proton in terms of x = p_{quark}/p_{proton}
- Well mapped out over large range of x and Q²

- Collected data has led to incredible precision for partonic structure of nucleons in the longitudinal direction!
- Collinear parton distribution functions (PDFs) are very well constrained over 4 orders of magnitude in x

Figures taken from http://nnpdf.hepforge.org

• • • • • • • • • • • •

QCD Cross Sections

- To account for bound state nature of hadrons, cross sections are factorized
- Nonperturbative parton distribution and fragmentation functions (PDFs and FFs) are used to describe the individual partons within a hadron
- Functions are nonperturbative, must be constrained by data!
- Taken to be process independent and uncorrelated

be constrained by data! $\sigma = f_1(x, Q^2) \otimes f_2(x, Q^2) \otimes \frac{d\hat{\sigma}}{dt} \otimes D_q^h(z, Q^2)$

11/21/2016 5 / 37

Multidimensional Proton Structure

- What does the bound-state proton look like in terms of the quarks and gluons inside it?
 - Position
 - Momentum
 - Spin
 - Flavor
 - Charge
 - Color (!)
- What about transverse momentum degrees of freedom?

1D vs. 3D Nonperturbative Functions

 Historically nonperturbative functions are approximated as only dependent on the collinear momentum fraction x In reality there must be transverse structure due to the confined nature of the partons and the additional possibility of gluon radiation

イロト 不得下 イヨト イヨト

• The unintegrated k_T distributions are explicitly dependent on transverse momentum

Parton Distribution Functions: $f(x) \rightarrow f(x, k_T)$

Fragmentation Functions: $D(z) \rightarrow D(z, j_T)$

• We can also add spin into the picture...

J.D. Osborn

Transverse-Momentum-Dependent PDF Zoo

Transverse-Momentum-Dependent (TMD) PDFs

- N Nucleon
- q Quark
- U Unpolarized
- L Longitudinally polarized
- T Transversely polarized

• 8 TMD PDFs at twist-2 describing transverse partonic structure, spin-spin, and spin-momentum *correlations!*

Image taken from Alexei Prokudin Spin 2016 $_{\odot}$

- Many transversemomentum-dependent PDFs and FFs correlate spin with momentum
- Beginning to really explore partonic correlations within the nucleon! New era of nucleon structure
- Are these correlations really present in nature? Absolutely!

arXiv:1609.07374, COMPASS at CERN

11/21/2016 9 / 37

PRD 87, 012010(2013), HERMES at HERA

J.D. Osborn

11/21/2016 11 / 37

11/21/2016 12 / 37

- In the collinear framework, nonperturbative functions are taken to be uncorrelated, universal, process independent functions
- In the transverse-momentum-dependent framework, it has been necessary to re-check these assumptions
- This has led to very interesting predictions...

Universality in Transverse-Momentum-Dependent Functions

- Sign change in Sivers transverse-momentum-dependent PDF predicted due to initial-state vs. final-state gluon exchange with proton remnants between Drell-Yan and semi-inclusive DIS: process dependent PDF!
- Factorization of transverse-momentum-dependent PDFs and fragmentation functions still predicted to hold in these QED processes

First Measurement of Possible Modified Universality

- Semi-inclusive DIS Sivers asymmetries have been measured, e.g. by HERMES and COMPASS collaborations
- First measurement of Drell-Yan type process from STAR at RHIC!
- Data support prediction of process dependent transverse-momentum-dependent PDF

PRL 116, 132301(2016)

J.D. Osborn

UMich HEP Seminar

11/21/2016 15 / 37

• Factorization is still predicted to hold in semi-inclusive DIS and Drell-Yan

$$\sigma = f_1(x, k_T, Q^2) \otimes f_2(x, k_T, Q^2) \otimes \frac{d\hat{\sigma}}{dt} \otimes D^h_q(z, j_T, Q^2)$$

- What about leading-order QCD processes where a colored quark or gluon is exchanged?
- Color present in both the initial and final state therefore soft gluon exchange possible in both the initial and final state

Factorization of Transverse-Momentum-Dependent Functions

- Factorization breaking predicted in a transversemomentum-dependent (TMD) framework for $p + p \rightarrow h_1 + h_2$ (PRD 81, 094006 (2010))
- TMD nonperturbative functions no longer defined partons are quantum mechanically correlated across colliding hadrons!
- Consequence of soft gluon exchanges in both the initial and final state

- Predicted modified universality of certain TMD PDFs and factorization breaking from same physical process - consequences of color flow in action!
- Consequence of QCD as a non-Abelian gauge theory

Looking for Factorization Breaking

- An obvious way to look for effects is by comparing measurement to a calculation which assumes factorization
- Problem: calculations require good knowledge of the transverse-momentumdependent nonperturbative functions. Collinear pQCD calculations still have ~10-40% errors
- What about observing change of functions with the hard scattering scale?

PRD 91, 032001 (2015) n+n → π⁺ + X E*d³ \db³ (mb/GeV² 10 acbyacb 0.5 (a) 0 10 p_ (GeV/c) mb GeV⁻² c^3 +p at $\sqrt{s} = 200$ GeV 10^{-3} π^0 (this analysis) 10^{-2} 10 STAR $(\pi^+ + \pi^-)/2$ NLO pQCD 10 10

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Collins-Soper-Sterman (CSS) Evolution

- CSS evolution first published in 1985. Similar to DGLAP evolution equation, but includes small transverse momentum scale
- Has been used to successfully describe global Drell-Yan and Tevatron Z⁰ cross sections
- Clear qualitative prediction momentum widths sensitive to nonperturbative transverse momentum increase with increasing hard scale
- Due to increased phase space for hard gluon radiation

J.D. Osborn

Drell-Yan/Z and Semi-Inclusive DIS in CSS Evolution

- Measurements show that Drell-Yan and semi-inclusive DIS follow theoretical prediction widths rise with hard scattering scale
- The theoretical evolution prediction comes directly out of the derivation for transverse-momentumdependent factorization

Drell-Yan/Z and Semi-Inclusive DIS in CSS Evolution

- Phenomenological studies confirm that Drell-Yan and semi-inclusive DIS follow theoretical prediction
- The evolution prediction comes directly out of the derivation for transversemomentum-dependent (TMD) factorization
 - If TMD factorization, then CSS evolution. If not CSS evolution, then not TMD factorization!
- Drell-Yan and semi-inclusive DIS clearly follow theoretical prediction

11/21/2016 21 / 37

Direct Photons and Dihadrons

- Direct photon-hadron and dihadron correlations both predicted to be sensitive to factorization breaking effects in PHENIX
- Assuming factorization, direct photon-hadrons probe three nonperturbative functions, while dihadrons probe four
- Direct photons offer one less avenue for gluon exchange in the final-state: fewer/different effects?

11/21/2016 22 / 37

Relativistic Heavy Ion Collider - RHIC at Brookhaven National Laboratory

J.D. Osborn

11/21/2016 23 / 37

PHENIX Detector

- PHENIX central arms
 - $\Delta\phi\sim\pi$
 - |η| <0.35
- Electromagnetic Calorimeter (PbSc/PbGl) provides isolated direct photon and $\pi^0 \rightarrow \gamma \gamma$ detection
- Drift Chamber (DC) and Pad Chambers (PC) provide nonidentified charged hadron detection

• New results from 2012/2013 \sqrt{s} =510 GeV p+p runs

11/21/2016 24 / 37

Angular Correlation Observables

11/21/2016 25 / 37

$\Delta \phi$ Correlations for π^0 -h[±] and Direct γ -h[±]

• Two jet structure visible for π^0 -h[±], isolation cut on near side for direct γ -h[±]

• Direct γ -h[±] probes smaller jet energy due to emerging from hard scattering at LO

11/21/2016 26 / 37

$\sqrt{\langle p_{out}^2 \rangle}$ Extracted from Fits to $\Delta \phi$ Correlations

- $\sqrt{\langle p_{out}^2 \rangle}$ characterizes away-side jet width in momentum space
- Decreases with hard scattering scale p_T^{trig} , opposite of semi-inclusive DIS and Drell-Yan!
- Sensitive to perturbative and nonperturbative k_T and j_T; fits are to entire away-side jet

- *p*_{out} shows two distinct regions: Gaussian and power law
- Gaussian fits clearly fail past ${\sim}1.3$ GeV/c
- Indicates transition from nonperturbative to perturbative k_T and j_T

• Note: Curves are Kaplan and Gaussian fits, not calculations!!

Gaussian Widths of pout

- Extract Gaussian widths of p_{out} vs. p_T^{trig}, hard scattering scale
- Sensitive to only nonperturbative k_T and j_T in the nearly back-to-back region $\Delta \phi \sim \pi$
- Gaussian widths decrease with p_T^{trig} also, consistent with $\sqrt{\langle p_{out}^2 \rangle}$ and opposite of semi-inclusive DIS and Drell-Yan!

PYTHIA p+p Event Simulation

- To make a comparison, used PYTHIA event generator simulation
- PYTHIA reproduces expectation from CSS evolution in Drell-Yan over large range of M_{μμ}

PYTHIA Event Simulation

- Can construct *p*out distributions for direct photons and dihadrons in PYTHIA as well for direct comparison
- PYTHIA replicates the nonperturbative to perturbative transition in the *p*_{out} distributions

11/21/2016 31 / 37

PYTHIA Event Simulation

- PYTHIA also replicates the negative slope of the gaussian widths in γ -hadron and π^0 -hadron!
- Magnitudes of widths from PYTHIA show ~15% difference from data despite slope being replicated

PYTHIA Simulation

- WHY does PYTHIA replicate both increasing behavior in p+p → ℓℓ and decreasing behavior in p+p →h+X??
- Unlike analytical pQCD calculation, PYTHIA forces all particles to color neutralize in the event, including remnants
- PYTHIA allows initial and final state soft gluon exchanges!
- PYTHIA authors confirm that it is plausible that PYTHIA would be sensitive to such effects

Image taken from http://home.thep.lu.se/ torbjorn/talks/karlsruhe10a.pdf

J.D. Osborn

Relations to Other QCD Studies?

 Color coherence studies at the Tevatron

• Color coherence studies at the LHC

Eur. Phys. J. C74 (2014) no.6,2901

< ロ > < 同 > < 三 > < 三

11/21/2016 34 / 37

-

Future Measurements

- Recent RHIC run in 2015 delivered one of the most unique data sets to PHENIX and STAR
- RHIC collided $p^{\uparrow}+p$, $p^{\uparrow}+Au$, and $p^{\uparrow}+Al$ at $\sqrt{s} = 200 \text{ GeV}$
- PHENIX recorded $\sim 10x$ the amount of $\sqrt{s} = 200$ GeV data from previous analysis
- Possibility to compare p+p at $\sqrt{s} = 200$ and 510 GeV

- Possibility to compare *p*+*p* to *p*+A (stronger gluon fields in nucleus??)
- Does transverse spin change anything??

11/21/2016 35 / 37

Future Measurements - sPHENIX

- Future detector at RHIC, sPHENIX, has been proposed
- Dedicated jet detector at RHIC
- Golden measurement γ -jet
- Allows full kinematic event reconstruction

11/21/2016 36 / 37

Conclusions

- Extending the knowledge of nucleon structure from 1 dimension to 3 dimensions (and more!)
- Transverse-momentum-dependent nucleon structure offers a richer description of the nucleon with many interesting phenomenological predictions
- Factorization breaking has been predicted in hadronic collisions where a final-state hadron is measured in a transverse-momentum-dependent framework
- PHENIX has just released the first measurement studying these predicted effects arXiv:1609.04769
- Data show the opposite evolution trend in the nonperturbative momentum widths from semi-inclusive DIS and Drell-Yan, where factorization is predicted to hold
- More measurements planned in the future... stay tuned!

Back Up

\sqrt{s} =200 GeV Results from PHENIX

- Previous PHENIX result at \sqrt{s} =200 GeV with larger errors (Phys. Rev. D 82, 072001 (2010))
- Next step: analyze recent Run 15 \sqrt{s} =200 GeV p+p and p+A data from RHIC!
- 6x luminosity in Run 15 p+p, as well as first result from p+A
- Can also look at transverse spin dependence in Run 15!

\sqrt{s} =200 GeV Results from RHIC

- Previous PHENIX result at \sqrt{s} =200 GeV to lower p_T^{trig} (PRD 81, 012002 (2010))
- Shows $\sqrt{\langle p_{out}^2 \rangle}$ over lower range of p_T^{trig}
- Also can plot away-side width in angular space same trend over large range of p_T^{trig}

・ロト ・聞ト ・ ヨト ・ ヨト

$\langle z_T \rangle$ with Gaussian Widths

- $\langle z_T \rangle \ p_T^{trig}$ correction was also applied to Gaussian widths vs. p_T^{trig}
- \$\langle z_T \rangle\$ more or less amounts to a scale factor of 2 difference in the slope

$$\overline{\langle p_{out}^2 \rangle}$$
 vs. p_T^{jet}

• Examined $\sqrt{\langle p_{out}^2 \rangle}$ as a function of p_T^{jet} as well

•
$$p_T^{jet} = p_T^{trig}$$
 for direct photons

•
$$p_T^{jet} = p_T^{trig} / \langle z_T \rangle$$
 for π^0 s, with $\langle z_T \rangle$ estimated using PYTHIA
• $\langle z_T \rangle = \frac{p_T^{trig}}{p_T^{trig}}$

• The $\sqrt{\langle p_{out}^2 \rangle}$ distributions almost form a continuous function?

More about Color Coherence

- Radiation "drags" color away from vertex
- Destructive interference occurs away from emitted gluons
- Soft radiation inhibited in certain areas
- Leads to certain regions of phase space where gluons constructively or destructively interfere

- See the following references
 - Phys. Rev. D 50,5562 (1994)
 - Phys. Lett. B 414 (1997) 419-427
 - Dokshitzer, Yuri.
 Basics of Perturbative QCD (Editions Frontieres, 1991)
 Chapters 4,5,9

SIDIS and e^+e^- Annihilation Momentum Widths

Z. Phys. C 21:37

11/21/2016 7 / 11

Partonic Contributions to Processes at LO

 π⁰ contribution changes from gluon dominated at low p_T to mix of quark and gluons at high p_T

- Direct photon contribution dominated by QCD Compton scattering at all p_T
- NLO corrections small at midrapidity (Phys. Lett. B 140,87)

★ ∃ ► ★

Image: A matrix

Analysis Methods

- Correlated π⁰-h[±] or isolated γ-h[±] are collected and corrected with:
 - Charged hadron efficiency
 - Acceptance correction
- Direct photons undergo additional statistical subtraction to remove decay photon background, estimated with Monte Carlo probability functions
- Isolation and tagging cuts remove decay photon background and NLO fragmentation photons

Probability for a π^0 to decay to a photon which could not be tagged with $5 < p_T < 7$ GeV/c in PHENIX

$$Y_{dir}^{iso} = rac{1}{R_{\gamma}^{iso}-1} \left(R_{\gamma}^{iso} Y_{inc}^{iso} - Y_{dec}^{iso}
ight)$$

PRD 82,072001 (2010) PRC 80,024908 (2009)

- R_{γ}^{iso} measured for statistical subtraction of isolated decay photon contribution
- R_{γ} measured in PHENIX and corrected by tagging and isolation efficiencies
- R^{iso}_γ >1 indicates isolated direct photon production

$$R_{\gamma}^{iso} = rac{R_{\gamma}}{(1 - \epsilon_{dec}^{tag})(1 - \epsilon_{dec}^{niso})} rac{N_{inc}^{iso}}{N_{inc}}$$

11/21/2016 10 / 11

11/21/2016 11 / 11

EL OQO

< ロ > < 同 > < 三 > < 三