4D Track Reconstruction at sPHENIX

Joe Osborn

Oak Ridge National Laboratory and Brookhaven National Laboratory

March 15, 2022

Next Generation of QCD at RHIC

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory

sPHENIX

- sPHENIX is a new detector being commissioned this year at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory
- Jet and heavy flavor probes for precision hot and cold QCD measurement comparisons to LHC
- Reuse Babar 1.4T solenoid and introduce hadronic calorimetery for the first time at RHIC for full jet measurements

sPHENIX

- Study QCD matter at varying temperatures for direct comparisons to LHC with rare probes
- Study partonic structure of protons and nuclei

sPHENIX Timeline

- sPHENIX detector designed for high precision tracking and jet measurements at RHIC
 - Large, hermetic acceptance
 - Hadronic calorimetery (first at RHIC)
 - Large offline data rate of ${\sim}100~\text{Gbit/s}$

- sPHENIX detector designed for high precision tracking and jet measurements at RHIC
 - Large, hermetic acceptance
 - Hadronic calorimetery (first at RHIC)
 - Large offline data rate of ${\sim}100~{\rm Gbit/s}$
- Primary tracking detectors:
 - Micro vertexing (MVTX) 3 layers of MAPS staves
 - Intermediate silicon tracker (INTT) 4 layers of silicon strips
 - Compact GEM-based TPC

- sPHENIX detector designed for high precision tracking and jet measurements at RHIC
 - Large, hermetic acceptance
 - Hadronic calorimetery (first at RHIC)
 - Large offline data rate of ${\sim}100~{\rm Gbit/s}$
- Primary tracking detectors:
 - Micro vertexing (MVTX) 3 layers of MAPS staves
 - Intermediate silicon tracker (INTT) 4 layers of silicon strips
 - Compact GEM-based TPC
 - Recent addition: TPC Outer Tracker (TPOT)
 - 8 modules of Micromegas inserted between

TPC and EMCal for TPC calibration

- sPHENIX detector designed for high precision tracking and jet measurements at RHIC
 - Large, hermetic acceptance
 - Hadronic calorimetery (first at RHIC)
 - Large offline data rate of ${\sim}100~{\rm Gbit/s}$
- Primary tracking detectors:
 - Micro vertexing (MVTX) 3 layers of MAPS staves
 - Intermediate silicon tracker (INTT) 4 layers of silicon strips
 - Compact GEM-based TPC
 - Recent addition: TPC Outer Tracker (TPOT)
 - 8 modules of Micromegas inserted between TPC and EMCal for TPC calibration

sPHENIX Tracking

- MVTX 3 layers of MAPS staves within $\sim 1 < r < 5 \ {\rm cm}$
 - Precision space point identification for primary and secondary vertexing
 - $\mathcal{O}(1-10)$ micron precision in $r\phi$, z
 - Integration time $\mathcal{O}(\mu s)$
- INTT 4 layers of silicon strips within $\sim 7 < r < 11 {\rm cm}$
 - $\mathcal{O}(10)$ micron precision in $r\phi$, 1cm in z
 - Fast $\mathcal{O}(100ns)$ integration time
- TPC Compact, 48 layer, continuous readout GEM-based
 - $\mathcal{O}(100)$ micron precision
 - Long $\sim 13 \mu \text{s}$ drift time
- TPOT 8 modules of micromegas to provide additional $\mathcal{O}(100)$ micron space point

sPHENIX Tracking

- MVTX 3 layers of MAPS staves within $\sim 1 < r < 5$ cm
 - Precision space point identification for primary and secondary vertexing
 - $\mathcal{O}(1-10)$ micron precision in $r\phi$, z
 - Integration time $\mathcal{O}(\mu s)$
- INTT 4 layers of silicon strips within $\sim 7 < r < 11$ cm
 - $\mathcal{O}(10)$ micron precision in $r\phi$, 1cm in z Timing
 - Fast O(100ns) integration time
- TPC Compact, 48 layer, continuous readout GEM-based
 - O(100) micron precision
 - Long $\sim 13 \mu s$ drift time
- TPOT 8 modules of micromegas to provide additional $\mathcal{O}(100)$ Calibration micron space point

Each detector plays a critical role for the success of sPHENIX physics!

loe Osborn

Momentum

sPHENIX Run Conditions

- RHIC will achieve the highest luminosities in its history in 2023-2025
 - Average of 50 kHz Au+Au and 3 MHz p + p collisions
- Translates to an average of 2-3 AuAu or \sim 20 p + p pileup collisions measured in sPHENIX
- Hit occupancies of O(100,000)expected, similar to those expected at HL-LHC!
- Track reconstruction difficult in high pile up environments!

sPHENIX Run Conditions

- + In a 3 year, ${\sim}24$ cryo-week per year data taking campaign, sPHENIX will collect ${\sim}$ 250 PB of data
- Data will be processed on a fixed size computational farm at BNL limited computational resources
- Necessitates fast, efficient track reconstruction
 - Goal is a CPU budget of 5 seconds-per-event on a single tracking pass
 - In reality, we will make two tracking passes including the TPC calibration workflow

sPHENIX-ACTS Track Reconstruction

- sPHENIX has implemented the A Common Tracking Software (ACTS) toolkit into our software stack
- ACTS is intended to be a modern, performant, flexible track reconstruction toolkit that is experiment independent
- Largely developed by ATLAS tracking experts; however, user/developer base has grown
 - sPHENIX, EIC, Belle2, ATLAS, FASER, ALICE...
- ACTS has modern development practices, e.g.
 - Semantic versioning/releases
 - $\bullet\,$ Full CI/CD implemented in Github Actions
 - Issue tracking
 - Documentation
 - Unit testing

ACTS Github link arXiv:2106.13593

ACTS Implementation Strategy

- ACTS requires geometry and measurement objects (that's all)
- sPHENIX objects store necessary information for ACTS objects
- Modules act as wrappers for calling ACTS tools and updating sPHENIX objects

ACTS Implementation Strategy

- ACTS requires geometry and measurement objects (that's all)
- sPHENIX objects store necessary information for ACTS objects
- Modules act as wrappers for calling ACTS tools and updating sPHENIX objects
- Eventually plan to move to a paradigm where sPHENIX objects == ACTS objects, for saving memory and time

ACTS Implementation Strategy

- ACTS requires geometry and measurement objects (that's all)
- sPHENIX objects store necessary information for ACTS objects
- Modules act as wrappers for calling ACTS tools and updating sPHENIX objects
- Eventually plan to move to a paradigm where sPHENIX objects == ACTS objects, for saving memory and time
- Fun4All-sPHENIX code available on Github code is open source and containerized with Singularity. Ask questions if you are stuck!

ACTS Geometry - Silicon+TPOT

- ACTS is able to perform material calculations quickly due to a simplified geometry model
- ACTS contains an available TGeometry plugin which takes TGeoNodes and builds Acts::Surfaces
- Any changes to sPHENIX GEANT 4 silicon or TPOT surfaces are then reflected in ACTS transparently

ACTS Geometry - TPC

- ACTS geometry model not immediately suited to TPC geometries, since surfaces are required
- With TPC, charge can exist anywhere in 3D volume
 - Side note: ongoing development within ACTS to allow for 3D fitting
- In place, create planar surfaces that mock cylindrical surfaces
- Surfaces are set at readout layers, so there is a direct mapping from a TPC readout module to *n* planar surfaces

Track Reconstruction Workflow

JDO et al., Computing and Software for Big Science 5, 23 (2021)

Track Reconstruction Workflow: Clustering

Start with clustering digitized hits to form clusters

Track Reconstruction Workflow: Seeding

Combine measurements into track seeds (track finding)

Track Reconstruction Workflow: Distortions

Determine/apply TPC distortion calibrations

Track Reconstruction Workflow: Fitting

Perform final track fitting

Track Reconstruction Strategy

- 4D tracking strategy: reconstruct seeds in each detector individually
- Combine information at end of seeding
 - TPC seed contains most of the track defining curvature
 - Silicon seed contains precise vertex + timing information
 - TPOT measurement (if available) adds TPC calibration information

MVTX+INTT Seeding

- Start with Acts seeding algorithm in 3 layer MVTX
 - Finds triplets reduce duplicates by deploying in MVTX only
- Propagate track seed to INTT layers to find additional matching measurements in tuned search windows
- Iterative track finding is a future goal

TPC Seeding

- Cellular Automaton seeding algorithm developed by ALICE collaboration deployed in TPC
- Chains links of triplets together in TPC layers
 - Needs improved performance at low p_T when chaining
- High efficiency and computationally fast

Track Matching and Fitting

- Silicon tracklets are matched with TPC tracks
- Further propagation performed to TPOT layers to find compatible TPOT measurements (if any)
- Matching windows tuned to limit number of duplicates while also finding real matches
- Final track seed constructed with silicon tracklet position, TPC tracklet momentum, and INTT timing information
- Acts track fitter and vertex propagation provides final track parameter determination

- Tracks are fit without any vertex information required
- Final fitted tracks are used to determine a list of all vertices in event
- Vertices are found by connected tracks with DCA less than 80 micron
- Outlier tracks are connected to closest vertex position

• Final fitted tracks are used for physics analysis

 Example: bunch structure visible from reconstructed track sample in 3 MHz minimum bias p + p

- Example: bunch structure visible from reconstructed track sample in 3 MHz minimum bias p + p
- Reconstructed TPC tracks are found from nearly all 120 RHIC bunches. \sim 100 ns bunch structure visible

- Example: bunch structure visible from reconstructed track sample in 3 MHz minimum bias p + p
- Reconstructed TPC tracks are found from nearly all 120 RHIC bunches. ~ 100 ns bunch structure visible
- Reconstructed TPC+MVTX tracks are found from adjacent several bunches

MDC2 Workfest, Tanner Mengel

- Example: bunch structure visible from reconstructed track sample in 3 MHz minimum bias p + p
- Reconstructed TPC tracks are found from nearly all 120 RHIC bunches. \sim 100 ns bunch structure visible
- Reconstructed TPC+MVTX tracks are found from adjacent several bunches
- Reconstructed TPC+MVTX+INTT tracks are highly suppressed outside of the nominal t₀ bunch crossing

TPC Distortion Corrections

- Major effort of the last ~year TPC distortion correction implementation
- In an ideal TPC, primary electrons drift longitudinally at a constant velocity
- Sources of distortions from the ideal case:
 - Static due to *E* × *B* inhomogeneities : $\mathcal{O}(cm)$, $\mathcal{O}(months)$
 - Beam induced due to ion back flow: $\mathcal{O}(mm), \mathcal{O}(min)$
 - Event-by-event fluctuations due to multiplicity : *O*(100μm), *O*(ms)

Distortion Corrections

- $\mathcal{O}(cm)$ distortions reconstructed with pulsed laser system
- O(mm) distortions reconstructed with tracks with TPOT
- \$\mathcal{O}(100\mu m)\$ distortions
 reconstructed with diffuse laser

Applying Distortions

- Distortion corrections are determined
- Applied only to clusters on tracks by moving clusters to surfaces based on correction value
- Method functions as expected with truth seeding
 - Continuing to understand degradation of resolution from TPC clustering algorithm

Streaming Readout

- Streaming readout DAQ will increase hard-to-trigger *p* + *p* data sample (e.g. HF decays) by orders of magnitude
- Different detector integration times with varying tracklet precision leads to complex track reconstruction workflow

- In streaming readout mode, the timing information from the INTT plays a critical role
- Without an explicit hardware trigger, we do not know where the TPC clusters are in *z*
 - What we really measure is the drift time, not the *z* position! Without a *t*₀, the *z* position is undetermined

- In streaming readout mode, the timing information from the INTT plays a critical role
- Without an explicit hardware trigger, we do not know where the TPC clusters are in *z*
 - What we really measure is the drift time, not the *z* position! Without a *t*₀, the *z* position is undetermined
- Identify bunch crossing and timing information with tracklet matching in η , ϕ , x, and y
 - Update TPC cluster *z* positions based on timing info provided by INTT match

- In streaming readout mode, the timing information from the INTT plays a critical role
- Without an explicit hardware trigger, we do not know where the TPC clusters are in *z*
 - What we really measure is the drift time, not the *z* position! Without a *t*₀, the *z* position is undetermined
- Identify bunch crossing and timing information with tracklet matching in η , ϕ , x, and y
 - Update TPC cluster *z* positions based on timing info provided by INTT match
- Implementation in progress

Practical Matters

- Practical matters how do I use the tracks in my analysis?
- SvtxTrack object is the primary track map class
- DSTs contain a map of SvtxTracks for analyzers to do with what they please
- Always available on the node tree feel free to ask for help or more details if you need help!
- See AnaTutorial::getTracks for some initial guidance

```
SvtxTrackMap *trackmap =
findNode::getClass<SvtxTrackMap>(topNode,
"SvtxTrackMap");
for(const auto& [key, track] : *trackmap) {
   float px = track->get_px();
   float py = track->get_py();
   float chisq = track->get_chisq();
   ...
```

}

Conclusions

- sPHENIX experiment is designed to be a precision QCD jet and heavy flavor experiment
 - Requires robust track reconstruction in high occupancy environments
- Tracking detectors uniquely complement each other and provide important pieces for 4D track reconstruction
- Streaming readout data taking will increase heavy flavor data but will create even more complex reconstruction environment! 4D reconstruction necessary!
- Future facilities, e.g. HL-LHC and EIC, are already planning for 4D tracking. Continued progress being made

Extras

Reconstructing Distortions with Tracks

- Find tracks using all detectors
- Fit tracks with MVTX+INTT+TPOT
- Form cluster-track residuals in TPC in ϕ and z

Reconstructing Distortions with Tracks

 Divide TPC in to O(10,000) volume elements and form linear relationships between residuals and track angles

$$\begin{split} r\Delta\phi &= r\delta\phi + \delta r\tan\alpha\\ \Delta z &= \delta z + \delta r\tan\beta\\ \chi^2 &= \sum \frac{r\Delta\phi - |r\delta\phi + \delta r\tan\alpha|^2}{\sigma_{r\phi}^2} + \frac{\Delta z - |\delta z + \delta r\tan\beta|^2}{\sigma_z^2} \end{split}$$

- $\Delta\phi$ and Δz measured residuals in the TPC
- α, β local track angles measured in (ϕ, r) , (z, r) planes
- δr , δz , $\delta \phi$ are unknown distortions
- Minimize and solve which gives three linear equations for three unknown average distortions

Towards the EIC

- The Electron Ion Collider (EIC) is the next generation precision QCD facility being constructed at Brookhaven National Laboratory
- Unique tracking challenges with planned streaming readout and high luminosity environment

4D Tracking at EIC

- Three major proposal efforts
 - ATHENA : athena-eic.org
 - CORE : eic.jlab.org/core
 - ECCE : ecce-eic.org
- ALL proposals included a layer of AC-LGAD detector technology for additional tracking space point + precise timing information for PID (O(10ps))
- ALL proposals included a streaming readout DAQ to collect complete unbiased data samples
 - 4D tracking essential for achieving physics at upcoming high luminosity facilities such as RHIC, EIC, and (HL)-LHC

