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Next Generation of QCD at RHIC

The Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory
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sPHENIX

• sPHENIX is a new detector being

commissioned this year at the

Relativistic Heavy Ion Collider at

Brookhaven National Laboratory

• Jet and heavy flavor probes for

precision hot and cold QCD

measurement comparisons to LHC

• Reuse Babar 1.4T solenoid and

introduce hadronic calorimetery for

the first time at RHIC for full jet

measurements
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sPHENIX

• Study QCD matter at varying temperatures for direct comparisons

to LHC with rare probes

• Study partonic structure of protons and nuclei
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sPHENIX Timeline
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sPHENIX Detector

• sPHENIX detector designed for high precision

tracking and jet measurements at RHIC

• Large, hermetic acceptance

• Hadronic calorimetery (first at RHIC)

• Large offline data rate of ∼100 Gbit/s

• Primary tracking detectors:

• Micro vertexing (MVTX) - 3 layers of MAPS

staves

• Intermediate silicon tracker (INTT) - 4 layers

of silicon strips

• Compact GEM-based TPC

• Recent addition: TPC Outer Tracker (TPOT)

- 8 modules of Micromegas inserted between

TPC and EMCal for TPC calibration
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sPHENIX Tracking

• MVTX - 3 layers of MAPS staves within ∼ 1 < r < 5 cm

• Precision space point identification for primary and secondary

vertexing

• O(1− 10) micron precision in rφ, z

• Integration time O(µs)

• INTT - 4 layers of silicon strips within ∼ 7 < r < 11cm

• O(10) micron precision in rφ, 1cm in z

• Fast O(100ns) integration time

• TPC - Compact, 48 layer, continuous readout GEM-based

• O(100) micron precision

• Long ∼ 13µs drift time

• TPOT - 8 modules of micromegas to provide additional O(100)

micron space point
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Vertexing

Timing

Momentum

Calibration

Each detector plays a critical role for the success of sPHENIX physics!



sPHENIX Run Conditions

• RHIC will achieve the highest

luminosities in its history in

2023-2025

• Average of 50 kHz Au+Au and 3

MHz p + p collisions

• Translates to an average of 2-3

AuAu or ∼20 p + p pileup collisions

measured in sPHENIX

• Hit occupancies of O(100, 000)

expected, similar to those expected

at HL-LHC!

• Track reconstruction difficult in

high pile up environments!
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sPHENIX Computing Challenges

• In a 3 year, ∼24 cryo-week per year data taking campaign, sPHENIX

will collect ∼ 250 PB of data

• Data will be processed on a fixed size computational farm at BNL -

limited computational resources

• Necessitates fast, efficient track reconstruction

• Goal is a CPU budget of 5 seconds-per-event on a single tracking

pass

• In reality, we will make two tracking passes including the TPC

calibration workflow
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sPHENIX-ACTS Track Reconstruction

• sPHENIX has implemented the A Common

Tracking Software (ACTS) toolkit into our

software stack

• ACTS is intended to be a modern, performant,

flexible track reconstruction toolkit that is

experiment independent

• Largely developed by ATLAS tracking experts;

however, user/developer base has grown

• sPHENIX, EIC, Belle2, ATLAS, FASER,

ALICE. . .

• ACTS has modern development practices, e.g.

• Semantic versioning/releases

• Full CI/CD implemented in Github Actions

• Issue tracking

• Documentation

• Unit testing

ACTS Github link

arXiv:2106.13593
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ACTS Implementation Strategy

sPHENIX Object sPHENIX-ACTS Module ACTS Tool

ACTS info

Update

Call tool

ACTS result

• ACTS requires geometry and measurement objects (that’s all)

• sPHENIX objects store necessary information for ACTS objects

• Modules act as wrappers for calling ACTS tools and updating

sPHENIX objects

• Eventually plan to move to a paradigm where sPHENIX objects ==

ACTS objects, for saving memory and time

• Fun4All-sPHENIX code available on Github - code is open source

and containerized with Singularity. Ask questions if you are stuck!
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ACTS Geometry - Silicon+TPOT

• ACTS is able to perform material

calculations quickly due to a

simplified geometry model

• ACTS contains an available

TGeometry plugin which takes

TGeoNodes and builds

Acts::Surfaces

• Any changes to sPHENIX Geant

4 silicon or TPOT surfaces are then

reflected in ACTS transparently
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INTT

MVTX



ACTS Geometry - TPC
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• ACTS geometry model not

immediately suited to TPC

geometries, since surfaces are required

• With TPC, charge can exist anywhere

in 3D volume

• Side note: ongoing development

within ACTS to allow for 3D fitting

• In place, create planar surfaces that

mock cylindrical surfaces

• Surfaces are set at readout layers, so

there is a direct mapping from a TPC

readout module to n planar surfaces
48 TPC layers



Track Reconstruction Workflow
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JDO et al., Computing and Software for Big Science 5, 23 (2021)



Track Reconstruction Workflow: Clustering

Joe Osborn 14

Start with clustering digitized hits to form clusters



Track Reconstruction Workflow: Seeding
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Combine measurements into track seeds (track finding)



Track Reconstruction Workflow: Distortions
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Determine/apply TPC distortion calibrations



Track Reconstruction Workflow: Fitting

Joe Osborn 17

Perform final track fitting



Track Reconstruction Strategy

• 4D tracking strategy: reconstruct seeds in each detector individually

• Combine information at end of seeding

• TPC seed contains most of the track defining curvature

• Silicon seed contains precise vertex + timing information

• TPOT measurement (if available) adds TPC calibration information
Joe Osborn 18



MVTX+INTT Seeding
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• Start with Acts seeding algorithm in

3 layer MVTX

• Finds triplets - reduce duplicates

by deploying in MVTX only

• Propagate track seed to INTT

layers to find additional matching

measurements in tuned search

windows

• Iterative track finding is a future

goal
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TPC Seeding
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• Cellular Automaton seeding

algorithm developed by ALICE

collaboration deployed in TPC

• Chains links of triplets together in

TPC layers

• Needs improved performance at

low pT when chaining

• High efficiency and computationally

fast
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Track Matching and Fitting
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• Silicon tracklets are matched with

TPC tracks

• Further propagation performed to

TPOT layers to find compatible

TPOT measurements (if any)

• Matching windows tuned to limit

number of duplicates while also

finding real matches

• Final track seed constructed with

silicon tracklet position, TPC

tracklet momentum, and INTT

timing information

• Acts track fitter and vertex

propagation provides final track

parameter determination
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Vertexing

• Tracks are fit without any vertex

information required

• Final fitted tracks are used to

determine a list of all vertices in

event

• Vertices are found by connected

tracks with DCA less than 80

micron

• Outlier tracks are connected to

closest vertex position

Joe Osborn 22



Final Tracks
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• Final fitted tracks are used for physics analysis
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4D Tracking with time

• Example: bunch structure visible

from reconstructed track sample in

3 MHz minimum bias p + p

• Reconstructed TPC tracks are

found from nearly all 120 RHIC

bunches. ∼100 ns bunch structure

visible

• Reconstructed TPC+MVTX tracks

are found from adjacent several

bunches

• Reconstructed TPC+MVTX+INTT

tracks are highly suppressed outside

of the nominal t0 bunch crossing
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TPC Distortion Corrections

• Major effort of the last ∼year - TPC

distortion correction implementation

• In an ideal TPC, primary electrons drift

longitudinally at a constant velocity

• Sources of distortions from the ideal case:

• Static due to E × B inhomogeneities :

O(cm), O(months)

• Beam induced due to ion back flow:

O(mm), O(min)

• Event-by-event fluctuations due to

multiplicity : O(100µm), O(ms)
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Distortion Corrections

• O(cm) distortions reconstructed

with pulsed laser system

• O(mm) distortions reconstructed

with tracks with TPOT

• O(100µm) distortions

reconstructed with diffuse laser
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Applying Distortions

• Distortion corrections are

determined

• Applied only to clusters on tracks

by moving clusters to surfaces

based on correction value

• Method functions as expected with

truth seeding

• Continuing to understand

degradation of resolution from

TPC clustering algorithm
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Streaming Readout

• Streaming readout DAQ will increase hard-to-trigger p + p data

sample (e.g. HF decays) by orders of magnitude

• Different detector integration times with varying tracklet precision

leads to complex track reconstruction workflow
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Streaming Readout Tracking

• In streaming readout mode, the timing information from the INTT

plays a critical role

• Without an explicit hardware trigger, we do not know where the

TPC clusters are in z

• What we really measure is the drift time, not the z position!

Without a t0, the z position is undetermined

• Identify bunch crossing and timing information with tracklet

matching in η, φ, x , and y

• Update TPC cluster z positions based on timing info provided by

INTT match

• Implementation in progress
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Practical Matters

• Practical matters - how do I use the

tracks in my analysis?

• SvtxTrack object is the primary

track map class

• DSTs contain a map of SvtxTracks

for analyzers to do with what they

please

• Always available on the node tree -

feel free to ask for help or more

details if you need help!

• See AnaTutorial::getTracks for

some initial guidance

SvtxTrackMap *trackmap =

findNode::getClass<SvtxTrackMap>(topNode,

"SvtxTrackMap");

for(const auto& [key, track] : *trackmap) {
float px = track->get px();

float py = track->get py();

float chisq = track->get chisq();

. . .

}
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Conclusions

• sPHENIX experiment is designed to be a precision QCD jet and

heavy flavor experiment

• Requires robust track reconstruction in high occupancy environments

• Tracking detectors uniquely complement each other and provide

important pieces for 4D track reconstruction

• Streaming readout data taking will increase heavy flavor data but

will create even more complex reconstruction environment! 4D

reconstruction necessary!

• Future facilities, e.g. HL-LHC and EIC, are already planning for 4D

tracking. Continued progress being made
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Extras
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Reconstructing Distortions with Tracks

• Find tracks using all detectors

• Fit tracks with

MVTX+INTT+TPOT

• Form cluster-track residuals in TPC

in φ and z
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Reconstructing Distortions with Tracks

• Divide TPC in to O(10, 000) volume elements and form linear

relationships between residuals and track angles

r∆φ = rδφ+ δr tanα

∆z = δz + δr tanβ

χ2 =
∑ r∆φ− |rδφ+ δr tanα|2

σ2
rφ

+
∆z − |δz + δr tanβ|2

σ2
z

• ∆φ and ∆z measured residuals in the TPC

• α, β local track angles measured in (φ, r), (z , r) planes

• δr , δz , δφ are unknown distortions

• Minimize and solve which gives three linear equations for three

unknown average distortions
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Towards the EIC

• The Electron Ion Collider (EIC) is

the next generation precision QCD

facility being constructed at

Brookhaven National Laboratory

• Unique tracking challenges with

planned streaming readout and high

luminosity environment
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4D Tracking at EIC

• Three major proposal efforts

• ATHENA : athena-eic.org

• CORE : eic.jlab.org/core

• ECCE : ecce-eic.org

• ALL proposals included a layer of

AC-LGAD detector technology for

additional tracking space point +

precise timing information for PID

(O(10ps))

• ALL proposals included a streaming

readout DAQ to collect complete

unbiased data samples

• 4D tracking essential for achieving physics at upcoming high

luminosity facilities such as RHIC, EIC, and (HL)-LHC
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