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The Standard Model

• The Standard Model of

particle physics is one of the

most successful descriptions

of fundamental interactions

• Two main “sectors”

• Strong force

• Electroweak force

• Strong force particularly not

well understood due to

confinement - quarks and

gluons cannot be observed

freely!
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Quantum Chromodynamics

• Quantum chromodynamics

(QCD) is the theory that

describes the strong force

• Theoretical description in

hand since the 1970’s

• However, connecting the

field theory degrees of

freedom (quarks and gluons)

to the observables (hadrons)

remains a challenge!

• Perturbative and

nonperturbative QCD

• Quarks and gluons are color

confined within hadrons!
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Observing Quarks and Gluons

• To “observe” quarks and gluons

(partons), we must produce them

via scattering processes

• Can use e+e− → qq̄,

e−p → e−q + X , or

pp → q/g + X

• After producing a parton, it

nonperturbatively becomes bound

state hadron(s)

• The collimated spray of particles

that results is called a jet
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Jets

• Jet physics is a broad experimental

endeavor at RHIC and the LHC

• Enabled by more robust

comparisons that can be made

between theory and experiment

with recent jet finding algorithms

• Jets are a proxy for partons, and

thus provide sensitivity to the

underlying partonic dynamics
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Jet Hadronization

• BUT - jets are still formed from

final-state hadrons!

• Nonperturbative elements of QCD

still important in understanding

perturbative jets

• We can use a field theory DOF

(jet/parton) to learn about the

observable DOF (bound-state

hadron formation)
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Examples: Perturbing the nonperturbative
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Phys. Rev. C 99, 044912 (2019)

Phys. Rev. D 98, 072004 (2018)
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• Using large energy-scale

measurements to look for effects

from QCD color

• Using jet mass to probe hadron

formation

• Using jets to understand partonic

composition of nuclei

• Multi-dimensional measurements

of hadron formation

• . . . . . . . . . . . .

Phys. Rev. Lett. 116, 32301 (2016)



Examples: Perturbing the nonperturbative

Joe Osborn (ORNL/UM) 8

 [GeV/c]trig

T
p

4 6 8 10 12 14

G
au

ss
ia

n 
W

id
th

 [G
eV

/c
]

0.4

0.5

0.6

0.7

0.8

0.9

PHENIX
p+p

<0.5E0.1<x
|<0.35η|

=200 GeVs ±-h0π
=200 GeVs ±-hγ
=510 GeVs ±-h0π

=510 GeVs ±-hγ

Phys. Rev. C 99, 044912 (2019)

Phys. Rev. D 98, 072004 (2018)

Phys. Rev. D 95, 072002 (2017)

Phys. Rev. Lett. 121, 092001 (2018)

• Using large energy-scale

measurements to look for effects

from QCD color

• Using jet mass to probe hadron

formation

• Using jets to understand partonic

composition of nuclei

• Multi-dimensional measurements

of hadron formation

• . . . . . . . . . . . .



Examples: Perturbing the nonperturbative

Joe Osborn (ORNL/UM) 8

 [GeV/c]trig

T
p

4 6 8 10 12 14

G
au

ss
ia

n 
W

id
th

 [G
eV

/c
]

0.4

0.5

0.6

0.7

0.8

0.9

PHENIX
p+p

<0.5E0.1<x
|<0.35η|

=200 GeVs ±-h0π
=200 GeVs ±-hγ
=510 GeVs ±-h0π

=510 GeVs ±-hγ

Phys. Rev. C 99, 044912 (2019)

Phys. Rev. D 98, 072004 (2018)

Phys. Rev. D 95, 072002 (2017)

Phys. Rev. Lett. 121, 092001 (2018)

Helenius, Lajoie, JO, Paakkinen, Paukkenen

Phys. Rev. D 100, 014004 (2019)

• Using large energy-scale

measurements to look for effects

from QCD color

• Using jet mass to probe hadron

formation

• Using jets to understand partonic

composition of nuclei

• Multi-dimensional measurements

of hadron formation

• . . . . . . . . . . . .

Phys. Rev. Lett. 121, 062002 (2018)



Examples: Perturbing the nonperturbative

Joe Osborn (ORNL/UM) 8

 [GeV/c]trig

T
p

4 6 8 10 12 14

G
au

ss
ia

n 
W

id
th

 [G
eV

/c
]

0.4

0.5

0.6

0.7

0.8

0.9

PHENIX
p+p

<0.5E0.1<x
|<0.35η|

=200 GeVs ±-h0π
=200 GeVs ±-hγ
=510 GeVs ±-h0π

=510 GeVs ±-hγ

Phys. Rev. C 99, 044912 (2019)

Phys. Rev. D 98, 072004 (2018)

Phys. Rev. D 95, 072002 (2017)

Phys. Rev. Lett. 121, 092001 (2018)

Helenius, Lajoie, JO, Paakkinen, Paukkenen

Phys. Rev. D 100, 014004 (2019)

JHEP 1903, 169 (2019) • Using large energy-scale

measurements to look for effects

from QCD color

• Using jet mass to probe hadron

formation

• Using jets to understand partonic

composition of nuclei

• Multi-dimensional measurements

of hadron formation

• . . . . . . . . . . . .



Examples: Perturbing the nonperturbative

Joe Osborn (ORNL/UM) 8

 [GeV/c]trig

T
p

4 6 8 10 12 14

G
au

ss
ia

n 
W

id
th

 [G
eV

/c
]

0.4

0.5

0.6

0.7

0.8

0.9

PHENIX
p+p

<0.5E0.1<x
|<0.35η|

=200 GeVs ±-h0π
=200 GeVs ±-hγ
=510 GeVs ±-h0π

=510 GeVs ±-hγ

Phys. Rev. C 99, 044912 (2019)

Phys. Rev. D 98, 072004 (2018)

Phys. Rev. D 95, 072002 (2017)

Phys. Rev. Lett. 121, 092001 (2018)

Helenius, Lajoie, JO, Paakkinen, Paukkenen

Phys. Rev. D 100, 014004 (2019)

JHEP 1903, 169 (2019) • Using large energy-scale

measurements to look for effects

from QCD color

• Using jet mass to probe hadron

formation

• Using jets to understand partonic

composition of nuclei

• Multi-dimensional measurements

of hadron formation

• . . . . . . . . . . . .



How do jets really form?
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Jet Formation
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Jet Formation
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Jet Formation
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Fragmentation

Hadronization



Fragmentation vs. Hadronization

Fragmentation

• Use jet grooming algorithms to

identify “prongs” of jet, as a proxy

for partonic splittings

Joe Osborn (ORNL/UM) 10
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Emphasis on parton shower

(perturbative QCD)

Emphasis on hadron formation

(NONperturbative QCD)



Jet substructure at LHCb

→ focus on hadronization

Joe Osborn (ORNL/UM) 10



Hadronization: What do we want?

• What is on our wish list to robustly

study hadronization?

1. A way to connect the initial-state
parton to the final-state hadrons

• Jets, as a proxy for a parton,

are a tool to connect the field

theory DOF to the observables

2. A way to connect the flavors of
the initial-state parton to the
final-state hadrons

• Would allow for complete

characterization of

parton → hadron

Joe Osborn (ORNL/UM) 11
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jet

parton

up

Λ0

π+ n

η

• Baryon vs. meson (3 quark vs. 2 quark

states)

• Correlations (e.g. strange,

heavy flavor quarks. . . )

• Resonance production (φ(ss̄),

J/ψ(cc̄), Υ(bb̄))

• . . .



LHC
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LHCb Experiment

• Precision tracking and particle identification spectrometer at forward

rapidities (2 < η < 5)

Joe Osborn (ORNL/UM) 13

VErtex LOcator

(VELO)

Tracking stations

and RICH

Electromagnetic and

hadronic calorimetry

Muon ID

JINST 3, S08005 (2008)

Int J. Mod. Phys. A30, 1530022 (2015)
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Why LHCb?
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• LHCb has unique advantages for

jet hadronization physics over

other LHC experiments

• Uniform coverage tracking, PID,

and calorimetry

• Can identify nearly all particles

within a high pT jet
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Jets at LHCb

• Jet production has been studied in

a variety of ways at LHCb

• W /Z+jet cross sections

• JHEP 05, 131 (2016)

• JHEP 01, 064 (2015)

• JHEP 01, 33 (2014)

• Heavy flavor jets

• PRL 118, 192001 (2017)

• JINST 10, P06013 (2015)

• First LHCb jet substructure

measurement was J/ψ-in-jet

production

Joe Osborn (ORNL/UM) 15
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Why Z+jet?

• Z+jet is predominantly sensitive to

light quark jets

• Nearly all other hadronization

studies at LHC measure inclusive

jets, which are sensitive to

predominantly gluon jets

• Opportunity to study light quark vs.

gluon:

• Hadronization dynamics

• Jet properties

Joe Osborn (ORNL/UM) 16
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Why Z+jet?
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Z+jet at LHCb

• Z+jet cross section published at√
s = 7 and 8 TeV

• High signal-to-background,

established analysis techniques

• Measure single charged

hadrons-in-jets associated with Z

bosons to study hadronization!

• First measurement of charged hadrons within Z tagged jets

• First measurement of charged hadrons-in-jets at forward rapidity

Joe Osborn (ORNL/UM) 17

Z 0 → µ+µ−
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Z+jet at LHCb

• Z+jet cross section published at√
s = 7 and 8 TeV

• High signal-to-background,

established analysis techniques

• Measure single charged

hadrons-in-jets associated with Z

bosons to study hadronization!
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Observables

z =
pjet · ph
|pjet |2

jT =
|ph × pjet |
|pjet |

r =
√

(φh − φjet)2 + (yh − yjet)2

• Measure hadronization observables in

two dimensions

• Longitudinal momentum fraction z

• Transverse momentum jT

• Radial profile r (transverse)

• Reminder - each of these observables

is for a single hadron within the jet

Joe Osborn (ORNL/UM) 18
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Results

• Measurements in three jet

transverse momentum (pjetT )

bins, integrated over Z

kinematics

• Longitudinal hadron-in-jet

distributions independent of jet

pT at high z

• Distributions diverge at low z

due to kinematic phase space

available

z
2−10 1−10
zddN  

+
je

t
Z

N
1

1−10

1

10

210

310  < 30 GeVjet
T

p20 < 

 < 50 GeVjet
T

p30 < 

 < 100 GeVjet
T

p50 < 

LHCb
 = 8 TeVs

Joe Osborn (ORNL/UM) 19

Phys. Rev. Lett. 123, 232001 (2019)

z =
pjet · ph
|pjet |2



ATLAS and LHCb Comparisons

• Compare ATLAS gluon

dominated to LHCb light

quark dominated

• Light quark jets produce

higher momentum particles

than gluon jets

• Light quark jets are more

collimated than gluon jets
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Comparison to ATLAS γ-jet

• ATLAS midrapidity γ-jet and

LHCb forward rapidity Z -jet

distributions are very similar

• Both processes light quark

jet dominated

• Light quark jet structure

shows little rapidity

dependence

• Hint of more collimated jets

in Z+jet

• Massive Z vs. massless γ?
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Results

• Transverse momentum shows

nonperturbative to

perturbative transition

• Gaussian shape at small jT

transitioning to power law

• Shapes very similar as a

function of pjetT - slight

increase of 〈jT 〉 with pjetT
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ATLAS and LHCb Comparisons

• Transverse momentum

distributions show smaller

〈jT 〉 in Z+jet vs. inclusive

jet at small jT

• Consistent with more

collimated light quark vs.

gluon jets

• Perturbative region quite

similar between quark and

gluon jets
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Results

• Radial profiles largely

independent of jet pT away from

jet axis

• Large angle hadron formation

independent of jet pT or scale

of process

• Multiplicity of hadrons along jet

axis rises sharply with jet pT
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ATLAS and LHCb Comparisons

• Comparing ATLAS

midrapidity inclusive jets to

LHCb forward Z+jet shows

jets are more collimated

when tagged with a Z

• Gluon jets “flatter” in radius,

while light quark jets are

“steeper”
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Future Jet Hadronization Measurements

• Intended to lay the foundation for a

broader hadronization program at

LHCb utilizing

• Particle ID (tracking, RICH,

calorimetry)

• Heavy flavor jet tagging

• Resonance production within jets

(φ, J/ψ, Υ)

• Correlations with flavor ID

• Change in target size (e.g. use

proton-nucleus collisions)

Joe Osborn (ORNL/UM) 26
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Future Jet Hadronization Measurements

• sPHENIX is a dedicated jet

detector being constructed at RHIC

• CD3 recently approved,

construction is moving forward for

installation in 2022

• Jet substructure and hadronization

a major component of science case

Joe Osborn (ORNL/UM) 27



Future Jet Hadronization Measurements

• sPHENIX is a dedicated jet

detector being constructed at RHIC

• CD3 recently approved,

construction is moving forward for

installation in 2022

• Jet substructure and hadronization

a major component of science case

Joe Osborn (ORNL/UM) 27



Future Jet Hadronization Measurements

• sPHENIX is a dedicated jet

detector being constructed at RHIC

• CD3 recently approved,

construction is moving forward for

installation in 2022

• Jet substructure and hadronization

a major component of science case

Joe Osborn (ORNL/UM) 27



Hadronization at an Electron Ion Collider

• Electron Ion Collider (EIC) is the next

major accelerator facility planned in the

US

• CD0 recently approved by DOE for

construction at Brookhaven National

Laboratory

• Hadronization is a major pillar of EIC

physics case

• Developing ideas in the next decade

before EIC will be crucial to maximize

science output of this unique QCD

machine!

Joe Osborn (ORNL/UM) 28
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Conclusions

• Jet substructure has exploded onto the high energy and nuclear

physics scene, with wide ranging physics interests

• New results on hadronization and jet substructure in Z +jet events

at LHCb

• Preferentially selects light quark jets vs. gluon jets

• Opportunity for understanding nonperturbative hadronization

dynamics

• Opportunity for understanding boosted gluon vs. light quark jets

• Ideas behind hadronization are relatively undeveloped, but there will

be significant growth with current and future experiments!

Joe Osborn (ORNL/UM) 29
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Back Up
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Analysis Details

Joe Osborn (ORNL/UM) 30

• Follow similar analysis strategy to ATLAS (EPJC 71, 1795 (2011),

NPA 978, 65 (2018)) and LHCb (PRL 118, 192001 (2017))

• Z → µ+µ− identified with 60 < Mµµ < 120 GeV, in 2 < η < 4.5

• Anti-kT jets are measured with R = 0.5, pjet
T > 20 GeV, in 2.5 < η < 4

• |∆φZ+jet | > 7π/8 and single primary vertex selects 2→ 2 topology

• Charged hadrons identified with pT > 0.25 GeV, p > 4 GeV, ∆R < 0.5

• Results efficiency corrected and 2D Bayesian unfolded



Theory Comparisons

• Theory colleagues have already published comparisons to data

• Reasonable description of data

• However, LHCb data has started a discussion on best (theoretically)

tractable ways to study hadronization

Joe Osborn (ORNL/UM) 31



Anti-kT Algorithm

• Sequential recombination algorithm

which clusters particles into jets

based on their pT

• Widely used as it is both infrared

and collinear safe in calculations

• Clusters particles around highest pT
particle in a conical shape

dij = min(p−2
Ti
, p−2

Tj
)

∆2
ij

R2

diB = p−2
Ti

Joe Osborn (ORNL/UM) 32



Comparisons with PYTHIA (z)
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• PYTHIA generally underpredicts

the number of high z hadrons
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Comparisons with PYTHIA (jT )
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• PYTHIA generally gets jT shape,

with about a 20% difference in

normalization
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Comparisons with PYTHIA (r)
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Symbolic Beginning

• Substructure revolution symbolically initiated by 2010 Butterworth

et al PRL

• Motivated by searching for highly boosted VH → `±bb̄ production

• Jet substructure was motivated by new particle searches

• However, many fields of physics at collider facilities quickly realized

the potential of these techniques

Joe Osborn (ORNL/UM) 36
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Fragmentation vs. Hadronization

Fragmentation

• Use jet grooming algorithms to

identify “prongs” of jet, as a proxy

for partonic splittings

LEFT

Hadronization

• Use individual hadrons to study

correlations with jet axis

RIGHT
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Jet Substructure Physics at RHIC

• STAR has measured hadrons in

jets produced in transversely

polarized pp collisions

• Sensitive to 3D distributions of

hadrons within jets

• Sensitive to quark-hadron

spin-momentum correlations

Joe Osborn (ORNL/UM) 38
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Jet Substructure Physics at RHIC

• Measurement of jet mass sensitive to both fragmentation and

hadronization aspects of jet substructure!

• Can study the interplay and connections between both

Joe Osborn (ORNL/UM) 39



Jet Substructure Physics at RHIC

• Measurements of momentum

sharing between subjets within jets

• Sensitive to QCD splitting function

• How is energy shared between

partons?

• Multidifferential as a function of jet

radius and jet transverse

momentum

Joe Osborn (ORNL/UM) 40



Jet Substructure at the LHC

• Measurement of bb̄ jets from gluon

splitting

• Improve understanding of boosted

H → bb̄ decays

• Improve understanding of bb̄

fragmentation

Joe Osborn (ORNL/UM) 41
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Jet Substructure at the LHC

• Searches for dark matter particles

using jet substructure techniques

• Soft drop algorithm recursively

removes soft, wide angle radiation

to better identify tt̄ candidates

• Improves searches for new

particles

Joe Osborn (ORNL/UM) 42
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Jet Substructure at the LHC

• Jet girth shows transverse

momentum weighted width

• Indication of how “wide” jets are

based on their hadronic constituents

• Improves understanding of

nonperturbative hadronization

dynamics
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What physics can jet substructure access?
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Jet Substructure

• Searching “find fulltext ’jet

substructure’ and tc p” on INSPIRE

yields number of published papers

• Number of papers per year has

exploded in last decade

• Papers discuss wide range of

physics interests

• Searches for new particles

• Heavy flavor jet tagging

• BSM searches (e.g. dark matter)

• Heavy ion collisions

• Machine learning

• QCD color connections

• . . .
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