Jet hadronization at LHCb

Joe Osborn on behalf of the LHCb collaboration

University of Michigan

March 20, 2019

- Jet physics is a broad experimental endeavor at LHC
- Enabled by more robust comparisons that can be made between theory and experiment with e.g. anti-k_T algorithm

- Jet physics is a broad experimental endeavor at LHC
- Enabled by more robust comparisons that can be made between theory and experiment with e.g. anti-k_T algorithm
- Jets are a proxy for partons, and thus provide sensitivity to the underlying partonic dynamics

- BUT jets are still formed from final-state hadrons!
- Nonperturbative elements of QCD still important in understanding perturbative jet formation

- BUT jets are still formed from final-state hadrons!
- Nonperturbative elements of QCD still important in understanding perturbative jet formation
- We can use a perturbative object to learn about nonperturbative physics

Jet Formation

Parton shower: in theory....

direction of shower

direction of clustering

Hard Probes - Wuhan - September 2016

Jet Formation

Parton shower: in practice

direction of shower

direction of clustering

Matteo Cacciari - LPTHE

Joe Osborn (Michigan)

Hard Probes - Wuhan - September 2016

Jet Formation

direction of shower

direction of clustering

Hard Probes - Wuhan - September 2016

- Physical ideas behind hadronization significantly behind those in the initial state (e.g. PDFs)
- Crucial to begin developing (nuclear modification of) hadronization program before EIC

- Physical ideas behind hadronization significantly behind those in the initial state (e.g. PDFs)
- Crucial to begin developing (nuclear modification of) hadronization program before EIC
- We should not begin the EIC era with limited ideas on how to pursue one of its major physics programs

Jet Substructure Studies at the LHC

- Several measurements of jet substructure at midrapidity from ATLAS, CMS, ALICE
- Wide range of physics interests and effects probed

PRL 121, 092001 (2018)

Joe Osborn (Michigan)

Jet Substructure Studies at the LHC

- Several measurements of jet substructure at midrapidity from ATLAS, CMS, ALICE
- Wide range of physics interests and effects probed

Jet Substructure Studies at the LHC

- Several measurements of jet substructure at midrapidity from ATLAS, CMS, ALICE
- Wide range of physics interests and effects probed

Data

Joe Osborn (Michigan)

0.6 ATLAS

PRC 90, 024908 (2014)

• What is on our wish list to *robustly* study hadronization?

- What is on our wish list to *robustly* study hadronization?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative

- What is on our wish list to *robustly* study hadronization?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative
 - 2. A way to connect the flavors of the initial-state parton to the final-state hadrons
 - Would allow for complete characterization of parton → hadron

- Baryon vs. meson
- Correlations (e.g. strangeness, heavy flavor...)
- Resonance production (ϕ , J/ψ , Υ)
- Increase projectile/target size

- What is on our wish list to *robustly* study hadronization?
 - 1. A way to connect the initial-state parton to the final-state hadrons
 - Jets, as a proxy for a parton, are a tool to connect the perturbative to nonperturbative
 - 2. A way to connect the flavors of the initial-state parton to the final-state hadrons
 - Would allow for complete characterization of parton → hadron

LHCb Experiment

• Precision tracking and particle identification spectrometer at forward rapidities (2 $<\eta<$ 5)

LHCb Experiment

- Precision tracking and particle identification spectrometer at forward rapidities (2 $<\eta<$ 5)

Why LHCb?

- hadron PID muon system lumi counters HCAL ECAL tracking
- LHCb has unique advantages for jet hadronization physics over other LHC experiments
- Uniform coverage tracking, PID, *and* calorimetry

Why LHCb?

- hadron PID muon system lumi counters HCAL ECAL tracking
- LHCb has unique advantages for jet hadronization physics over other LHC experiments
- Uniform coverage tracking, PID, *and* calorimetry
- Can identify nearly all particles within a high p_T jet

Why LHCb?

LHC 8 TeV Kinematics

- LHCb has unique advantages for jet hadronization physics over other LHC experiments
- Uniform coverage tracking, PID, and calorimetry
- Can identify nearly all particles within a high p_T jet
- Also occupy a unique region in (x, Q^2)

Jets at LHCb

- Jet production has been studied in a variety of ways at LHCb
 - *W*/*Z*+jet cross sections
 - JHEP 05, 131 (2016)
 - JHEP 01, 064 (2015)
 - JHEP 01, 33 (2014)
 - Heavy flavor jets
 - PRL 118, 192001 (2017)
 - JINST 10, P06013 (2015)
- First LHCb jet substructure measurement is J/ψ-in-jet production

Z+jet at LHCb

- Z+jet cross section published at $\sqrt{s} = 7$ and 8 TeV
- High signal-to-background, established analysis techniques

Z+jet at LHCb

- Z+jet cross section published at $\sqrt{s} = 7$ and 8 TeV
- High signal-to-background, established analysis techniques
- Preferentially selects light quarks (!)
- Starkly in contrast from midrapidity inclusive jet results at LHC which are gluon dominated until very high p_T (p_T > O(400) GeV)
- Recent ATLAS/CMS γ -tagged jets complementary

Z+jet at LHCb

- Z+jet cross section published at $\sqrt{s} = 7$ and 8 TeV
- High signal-to-background, established analysis techniques
- Preferentially selects light quarks (!)
- Starkly in contrast from midrapidity inclusive jet results at LHC which are gluon dominated until very high p_T (p_T > O(400) GeV)
- Recent ATLAS/CMS γ -tagged jets complementary

- First LHC measurement of charged hadrons within Z tagged jets
- First LHC measurement of charged hadrons-in-jets at forward rapidity

Observables

- Measure hadronization observables in two dimensions
 - Longitudinal momentum fraction z
 - Transverse momentum j_T
 - Radial profile r

Observables

- Measure hadronization observables in two dimensions
 - Longitudinal momentum fraction z
 - Transverse momentum j_T
 - Radial profile r
- Intended to lay the foundation for a broader hadronization program at LHCb utilizing
 - Particle ID (tracking, RICH, calorimetry)
 - Heavy flavor jet tagging
 - Resonance production within jets $(\phi, J/\psi, \Upsilon)$
 - Correlations with flavor ID

 Follow similar analysis strategy to ATLAS (EPJC 71, 1795 (2011), NPA 978, 65 (2018)) and LHCb (PRL 118, 192001 (2017))

Event 885617570 Run 157596 Sat, 11 Jul 2015 02:01:18

- Follow similar analysis strategy to ATLAS (EPJC 71, 1795 (2011), NPA 978, 65 (2018)) and LHCb (PRL 118, 192001 (2017))
- + $Z
 ightarrow \mu^+ \mu^-$ identified with 60 $< M_{\mu\mu} <$ 120 GeV, in 2 $< \eta <$ 4.5
- Anti-k_T jets are measured with $R=0.5,\ p_T^{jet}>$ 20 GeV, in 2.5 $<\eta<$ 4
- $|\Delta \phi_{Z+jet}| > 7\pi/8$ selects $2 \rightarrow 2$ event topology

Event 885617570 Run 157596 Sat, 11 Jul 2015 02:01:18

- Follow similar analysis strategy to ATLAS (EPJC 71, 1795 (2011), NPA 978, 65 (2018)) and LHCb (PRL 118, 192001 (2017))
- $Z
 ightarrow \mu^+ \mu^-$ identified with 60 $< M_{\mu\mu} <$ 120 GeV, in 2 $< \eta <$ 4.5
- Anti-k_T jets are measured with $R=0.5,\ p_T^{jet}>$ 20 GeV, in 2.5 $<\eta<$ 4
- $|\Delta \phi_{Z+jet}| > 7\pi/8$ selects $2 \rightarrow 2$ event topology
- Charged hadrons identified with $p_T > 0.25$ GeV, p > 4 GeV, $\Delta R < 0.5$

Event 885617570 Run 157596 Sat, 11 Jul 2015 02:01:18

- Follow similar analysis strategy to ATLAS (EPJC 71, 1795 (2011), NPA 978, 65 (2018)) and LHCb (PRL 118, 192001 (2017))
- $Z
 ightarrow \mu^+ \mu^-$ identified with 60 $< M_{\mu\mu} <$ 120 GeV, in 2 $< \eta <$ 4.5
- Anti-k_T jets are measured with $R=0.5,\ p_T^{jet}>$ 20 GeV, in 2.5 $<\eta<$ 4
- $|\Delta \phi_{Z+jet}| > 7\pi/8$ selects $2 \rightarrow 2$ event topology
- Charged hadrons identified with $p_T > 0.25$ GeV, p > 4 GeV, $\Delta R < 0.5$
- Results efficiency corrected and 2D Bayesian unfolded

- Measurements in three p_T^{jet} bins, . integrated over Z kinematics
- Longitudinal hadron-in-jet distributions independent of jet *p_T* at high *z*
- Distributions diverge at low z due to kinematic phase space available

ATLAS and LHCb Comparisons

• Comparing ATLAS midrapidity inclusive jets to LHCb forward Z+jet shows longitudinal distributions "flatter" as a function of z

ATLAS and LHCb Comparisons

- Comparing ATLAS midrapidity inclusive jets to LHCb forward Z+jet shows longitudinal distributions "flatter" as a function of z
- Caveats ATLAS/LHCb measurements can only be compared qualitatively due to different kinematics

Comparison to ATLAS γ -jet

- ATLAS midrapidity γ-jet and LHCb Z-jet longitudinal distributions are very similar in the comparable jet p_T bin
- Kinematic fiducial space similar but not exactly the same

Results

- Transverse momentum shows nonperturbative to perturbative transition
- Shapes very similar as a function of p_T^{jet} - slight increase of (j_T) with p_T^{jet}

ATLAS and LHCb Comparisons

• Transverse momentum distributions show smaller $\langle j_T \rangle$ in Z+jet vs. inclusive jet at small j_T

- Radial profiles largely independent of jet p_T away from jet axis
 - Indication of independence of nonperturbative contributions?
- Multiplicity of hadrons along jet axis rises sharply with jet p_T

ATLAS and LHCb Comparisons

• Comparing ATLAS midrapidity inclusive jets to LHCb forward Z+jet shows jets are more collimated when tagged with a Z

Comparisons with PYTHIA

• Comparisons with PYTHIA show that PYTHIA generally underpredicts the number of high momentum charged hadrons within Z-tagged jets

- New results on hadronization and jet substructure in Z-tagged jets at LHCb
- Select events that better correspond to a $2 \rightarrow 2$ hard scattering
- Measure longitudinal and transverse charged hadron-in-jet observables with respect to anti-k_T jet axis
- Preferentially selects light quark jets vs. gluon jets opportunity for understanding nonperturbative hadronization differences

- New results on hadronization and jet substructure in Z-tagged jets at LHCb
- Select events that better correspond to a $2 \rightarrow 2$ hard scattering
- Measure longitudinal and transverse charged hadron-in-jet observables with respect to anti-k_T jet axis
- Preferentially selects light quark jets vs. gluon jets opportunity for understanding nonperturbative hadronization differences
- More hadronization results to come from LHCb utilizing PID, heavy flavor ID, and calorimetry

Back Up

Comparisons with PYTHIA (z)

Comparisons with PYTHIA (j_T)

Comparisons with PYTHIA (r)

24