Effects from QCD color flow in proton-proton and proton-nucleus collisions

Joe Osborn

University of Michigan

September 14, 2018

- QCD is the fundamental gauge theory describing the strong force
- Written in terms of quark and gluon (parton) degrees of freedom

- QCD is the fundamental gauge theory describing the strong force
- Written in terms of quark and gluon (parton) degrees of freedom
- But we can only directly observe combinations of partons in the laboratory!
- Confinement and the non-Abelian nature of QCD: gluon self coupling and color charge

QCD Cross Sections

- To account for bound state nature of hadrons, cross sections are factorized
- Nonperturbative parton distribution and fragmentation functions (PDFs and FFs) are used to describe the individual partons within a hadron

$$\sigma = f_1(x, Q^2) \otimes f_2(x, Q^2) \otimes \frac{d\hat{\sigma}}{dt} \otimes D_q^h(z, Q^2)$$
$$x = \frac{p_{parton}}{p_{proton}}$$

QCD Cross Sections

- To account for bound state nature of hadrons, cross sections are factorized
- Nonperturbative parton distribution and fragmentation functions (PDFs and FFs) are used to describe the individual partons within a hadron
- Functions are nonperturbative, must be constrained by data!

$$x = \frac{p_{parton}}{p_{proton}}$$

QCD Cross Sections

- To account for bound state nature of hadrons, cross sections are factorized
- Nonperturbative parton distribution and fragmentation functions (PDFs and FFs) are used to describe the individual partons within a hadron
- Functions are nonperturbative, must be constrained by data!
- Taken to be process independent and uncorrelated

- Historically, the structure of the proton has been approximated as only dependent on the collinear momentum fraction *x*
- The last two decades have seen QCD move from a static to dynamic picture of the proton

- Historically, the structure of the proton has been approximated as only dependent on the collinear momentum fraction *x*
- The last two decades have seen QCD move from a static to dynamic picture of the proton

• What does the proton look like in terms of the quarks and gluons inside of it?

- Historically, the structure of the proton has been approximated as only dependent on the collinear momentum fraction *x*
- The last two decades have seen QCD move from a static to dynamic picture of the proton

- What does the proton look like in terms of the quarks and gluons inside of it?
 - Position (2D)
 - Spin
 - Flavor

- Momentum (3D)
- Color (!)

- Historically, the structure of the proton has been approximated as only dependent on the collinear momentum fraction *x*
- The last two decades have seen QCD move from a static to dynamic picture of the proton

- What does the proton look like in terms of the quarks and gluons inside of it?
 - Position (2D)
 - Spin
 - Flavor

- Momentum (3D)
- Color (!)

• Color flow through hard processes leads to certain regions of particle production in hadronic collisions

Y. Dokshitzer. Basics of Perturbative QCD, 1991

- Color flow through hard processes leads to certain regions of particle production in hadronic collisions
- Color connects hard scattered partons with remnants of other proton

Y. Dokshitzer. Basics of Perturbative QCD, 1991

- Color flow through hard processes leads to certain regions of particle production in hadronic collisions
- Color connects hard scattered partons with remnants of other proton
- Color connections lead to destructive gluon interferences
 → depletions in hadron production

Y. Dokshitzer. Basics of Perturbative QCD, 1991

• Color coherence measurements study:

$$\beta = \tan^{-1} \frac{\Delta \phi_{21}}{\operatorname{sign}(\eta_1) \Delta \eta_{21}}$$

- Angle in (η, ϕ) space between sub-leading hard-scattered jet and gluon initiated jet
- $\beta = 0$ points to the beam closer to jet 1 in (η, ϕ) space
- $\beta = \pi$ points to the beam farther from jet 1 in (η, ϕ) space

Color Coherence Measurements

Color Coherence Measurements

Joe Osborn (UM)

Color Coherence Measurements

Relation to High Multiplicity?

- Surprising results from RHIC and LHC show novel phenomena in high multiplicity p+p and p+A
- What role does color play in these measurements?
- Color coherence measurements also probing (parton) long range η correlations

Jet Substructure

- Absence of color connection θ_p expected to be distributed uniformly
- Color connection θ_p expected to preferentially lie along jet connection vector $\theta_p \sim 0$

Jet Substructure

- Jet pull angle preferentially \sim 0 \rightarrow color connections

arXiv:1805.02935

• Color affects radiation patterns within jets

Multidifferential observables are revealing the effects of color flow in p+p collisions

1D vs. 3D Nonperturbative Functions

- There must be transverse structure due to the confined nature of the partons and the additional possibility of gluon radiation
- The unintegrated k_T distributions are explicitly dependent on transverse momentum

Parton Distribution Functions: $f(x) \rightarrow f(x, k_T)$

Fragmentation Functions: $D(z) \rightarrow D(z, j_T)$

$$\sigma = f_{q/h}(x, k_T, Q^2) \otimes \frac{d\hat{\sigma}}{dt} \otimes D_{q/h}(z, j_t, Q^2)$$

1D vs. 3D Nonperturbative Functions

- There must be transverse structure due to the confined nature of the partons and the additional possibility of gluon radiation
- The unintegrated k_T distributions are explicitly dependent on transverse momentum

Parton Distribution Functions: $f(x) \rightarrow f(x, k_T)$

Fragmentation Functions: $D(z) \rightarrow D(z, j_T)$

$$\sigma = f_{q/h}(x, k_T, Q^2) \otimes \frac{d\hat{\sigma}}{dt} \otimes D_{q/h}(z, j_t, Q^2)$$
$$\implies \Lambda_{QCD} \lesssim k_T \ll Q$$

⇒ Multi-scale observables necessary!

- In the collinear framework, nonperturbative functions are taken to be uncorrelated, universal, process independent functions
- In the transverse-momentum-dependent framework, it has been necessary to re-check these assumptions

- In the collinear framework, nonperturbative functions are taken to be uncorrelated, universal, process independent functions
- In the transverse-momentum-dependent framework, it has been necessary to re-check these assumptions
- What happens in leading-order QCD processes where a colored quark or gluon is exchanged at the hard interaction vertex?
- Color present in both the initial and final state therefore soft gluon exchange possible in both the initial and final state

- Factorization breaking predicted in a transverse-momentum-dependent (TMD) framework for $p + p \rightarrow h_1 + h_2$ (PRD 81, 094006 (2010))
- TMD nonperturbative functions no longer defined - partons are quantum mechanically correlated via color across colliding hadrons!

- Factorization breaking predicted in a transverse-momentum-dependent (TMD) framework for $p + p \rightarrow h_1 + h_2$ (PRD 81, 094006 (2010))
- TMD nonperturbative functions no longer defined - partons are quantum mechanically correlated via color across colliding hadrons!

$$\sigma = f_1(x, k_T) \otimes f_2(x, k_T) \otimes \frac{d\hat{\sigma}}{dt} \otimes D_1(z, j_t) \otimes D_2(z, j_T)$$

$$\downarrow$$

$$\sigma \stackrel{?}{=} CF(x_1, x_2, k_{T_1}, k_{T_2}, z_1, z_2, j_{T_1}, j_{T_2}) \otimes \frac{d\hat{\sigma}}{dt}$$

- Factorization breaking predicted in a transverse-momentum-dependent (TMD) framework for $p + p \rightarrow h_1 + h_2$ (PRD 81, 094006 (2010))
- TMD nonperturbative functions no longer defined - partons are quantum mechanically correlated via color across colliding hadrons!
- Results from soft gluon exchanges in both the initial and final state

- Factorization breaking predicted in a transverse-momentum-dependent (TMD) framework for $p + p \rightarrow h_1 + h_2$ (PRD 81, 094006 (2010))
- TMD nonperturbative functions no longer defined - partons are quantum mechanically correlated via color across colliding hadrons!
- Results from soft gluon exchanges in both the initial and final state

• Consequence of QCD as a non-Abelian gauge theory

Color Entanglement and Color Coherence

• The same underlying QCD phenomena at play - color leads to nonperturbative consequences

How can we search for effects from TMD color entanglement?

Collins-Soper-Sterman (CSS) Evolution with Q²

- CSS evolution first published in 1985. Similar to DGLAP evolution equation, but includes small transverse momentum scale
- Has been used to successfully describe global Drell-Yan and Tevatron Z⁰ cross sections

Collins-Soper-Sterman (CSS) Evolution with Q²

- CSS evolution first published in 1985. Similar to DGLAP evolution equation, but includes small transverse momentum scale
- Has been used to successfully describe global Drell-Yan and Tevatron Z⁰ cross sections
- Clear qualitative prediction momentum widths sensitive to nonperturbative transverse momentum increase with increasing hard scale
- Due to increased phase space for gluon radiation

Drell-Yan/Z and Semi-Inclusive DIS in CSS Evolution

• Phenomenological studies confirm that Drell-Yan and semi-inclusive DIS, where factorization is predicted to hold, follow theoretical prediction

Drell-Yan/Z and Semi-Inclusive DIS in CSS Evolution

- Phenomenological studies confirm that Drell-Yan and semi-inclusive DIS, where factorization is predicted to hold, follow theoretical prediction
- The evolution prediction comes directly out of the derivation for transverse-momentum-dependent (TMD) factorization

Drell-Yan/Z and Semi-Inclusive DIS in CSS Evolution

- Phenomenological studies confirm that Drell-Yan and semi-inclusive DIS, where factorization is predicted to hold, follow theoretical prediction
- The evolution prediction comes directly out of the derivation for transverse-momentum-dependent (TMD) factorization
 - If TMD factorization, then CSS evolution. If not CSS evolution, then not TMD factorization!

• To probe color entanglement effects, an observable must have color in the initial and final state

- To probe color entanglement effects, an observable must have color in the initial and final state
 - Can use $p + p \rightarrow \gamma + h^{\pm} + X$ or $p + p \rightarrow h^{\pm} + h^{\pm} + X$

- To probe color entanglement effects, an observable must have color in the initial and final state
- To probe transverse-momentum-dependent physics, an observable must be sensitive to two scales: $\Lambda_{QCD} \lesssim k_T \ll Q$

- To probe color entanglement effects, an observable must have color in the initial and final state
- To probe transverse-momentum-dependent physics, an observable must be sensitive to two scales: $\Lambda_{QCD} \lesssim k_T \ll Q$

- To probe color entanglement effects, an observable must have color in the initial and final state
- To probe transverse-momentum-dependent physics, an observable must be sensitive to two scales: $\Lambda_{QCD} \lesssim k_T \ll Q$

Relativistic Heavy Ion Collider - RHIC at Brookhaven National Laboratory

Relativistic Heavy Ion Collider - RHIC at Brookhaven National Laboratory

$\Delta \phi$ Correlations for $\pi^0 - \mathbf{h}^{\pm}$ and Direct $\gamma - \mathbf{h}^{\pm}$

$\Delta \phi$ Correlations for $\pi^0 - h^{\pm}$ and Direct $\gamma - h^{\pm}$

21 arXiv:1805.02450

Measurements of p_{out} Distributions in $p+p \rightarrow$ hadrons

- Two distinct regions:
 - Gaussian at small pout
 - Power law at large pout

Measurements of p_{out} Distributions in $p+p \rightarrow$ hadrons

- Two distinct regions:
 - Gaussian at small pout
 - Power law at large pout
- Indicates TMD observable $\Lambda_{QCD} \lesssim p_{out} \ll p_T^{trig}$
- Can characterize any potential color effects by studying width evolution as a function of p_T^{trig}

Gaussian Width of p_{out} Evolution in $p+p \rightarrow$ hadrons

• Away-side Gaussian widths shown as a function of $p_T^{\rm trig}$ at $\sqrt{s} = 200$ and 510 GeV

- Away-side Gaussian widths shown as a function of $p_T^{\rm trig}$ at $\sqrt{s} = 200$ and 510 GeV
- Qualitatively similar behavior to Drell-Yan and semi-inclusive DIS interactions where color entanglement is not predicted

Measurements of p_{out} Distributions in $p+p \rightarrow$ hadrons

Measurements of p_{out} Distributions in $p+p \rightarrow$ hadrons

arXiv:1805.02450

- Measure p_{out} as a function of p_T^{trig} or x_E
- Multidifferential precision QCD measurements!

Comparing SIDIS and $p+p \rightarrow$ hadrons

SIDIS

 $p+p \rightarrow hadrons$

Comparing Drell-Yan and $p+p \rightarrow$ hadrons

Comparing Drell-Yan and $p+p \rightarrow$ hadrons

- Since qualitative behavior is similar, calculations needed to compare transverse-momentum-dependent evolution rates in different processes
- Drell-Yan/SIDIS (no color entanglement predicted) and *p*+*p* → hadrons (color entanglement predicted) may exhibit different magnitudes, evolution rates, etc.

What about proton-nucleus collisions, where there can be more QCD interactions?

Extending Color Studies to *p*+A

- Dihadrons give additional QCD interactions in *p*+A collisions compared to direct photon-hadrons
- Measure the p_{out} distributions on both the near-side and away-side in p+p and p+A to compare

Extending Color Studies to *p*+A

- Dihadrons give additional QCD interactions in *p*+A collisions compared to direct photon-hadrons
- Measure the p_{out} distributions on both the near-side and away-side in p+p and p+A to compare

Nonperturbative Transverse Momentum Broadening in p+A

Nonperturbative Transverse Momentum Broadening in p+A

Nonperturbative Transverse Momentum Broadening in p+A

• Measure away-side transverse momentum broadening as a function of $N_{coll} \approx$ proxy for path length

- Measure away-side transverse momentum broadening as a function of $N_{coll} \approx$ proxy for path length
- Physical effects that contribute?
 - Stronger color fields in nucleus?

- Measure away-side transverse momentum broadening as a function of $N_{coll} \approx$ proxy for path length
- Physical effects that contribute?
 - Stronger color fields in nucleus?
 - Additional initial-state k_T in nucleus?
 - Energy loss in p+A?

• ...

- Measure away-side transverse momentum broadening as a function of $N_{coll} \approx$ proxy for path length
- Physical effects that contribute?
 - Stronger color fields in nucleus?
 - Additional initial-state k_T in nucleus?
 - Energy loss in p+A?

• To be submitted for publication soon, stay tuned!

Future Color Entanglement Measurements

- Color entanglement interactions require color in the initial and final states
- Crucial to make measurements at RHIC and LHC for interpreting future Electron-Ion Collider data!

Future Color Entanglement Measurements

- Color entanglement interactions require color in the initial and final states
- Crucial to make measurements at RHIC and LHC for interpreting future Electron-Ion Collider data!
- Golden channel: γ/Z^0 -jet \rightarrow parton dynamics can be determined at leading order
- Need high p_T processes which still have sensitivity to the nonperturbative physics

• Color is an integral part of QCD, but new observables and phenomenological calculations are just now exploring its consequences!

- Color is an integral part of QCD, but new observables and phenomenological calculations are just now exploring its consequences!
- New measurements in p+p → hadrons sensitive to color effects can be compared to detailed calculations in e + p → e + h, p+p → ℓ⁺ℓ⁻ to learn about QCD factorization breaking

- Color is an integral part of QCD, but new observables and phenomenological calculations are just now exploring its consequences!
- New measurements in p+p → hadrons sensitive to color effects can be compared to detailed calculations in e + p → e + h, p+p → ℓ⁺ℓ⁻ to learn about QCD factorization breaking
- Dihadron correlations in *p*+A collisions exhibit path length dependence, sensitive to color, energy loss, and more

- Color is an integral part of QCD, but new observables and phenomenological calculations are just now exploring its consequences!
- New measurements in p+p → hadrons sensitive to color effects can be compared to detailed calculations in e + p → e + h, p+p → ℓ⁺ℓ⁻ to learn about QCD factorization breaking
- Dihadron correlations in *p*+A collisions exhibit path length dependence, sensitive to color, energy loss, and more
- Future measurements at sPHENIX and LHCb will continue to probe color effects
Conclusions

- Color is an integral part of QCD, but new observables and phenomenological calculations are just now exploring its consequences!
- New measurements in p+p → hadrons sensitive to color effects can be compared to detailed calculations in e + p → e + h, p+p → ℓ⁺ℓ⁻ to learn about QCD factorization breaking
- Dihadron correlations in *p*+A collisions exhibit path length dependence, sensitive to color, energy loss, and more
- Future measurements at sPHENIX and LHCb will continue to probe color effects
- Synthesizing information from many different collision systems is joining historically separate fields it's all QCD!

Back up

- Example $t\bar{t}$ color topology
- *tt* are color connected via gluon splitting
- Hadronizing quarks from *W* decays can also be color connected

• ATLAS collaboration also measures β_{γ} , defined in a similar way to β_{jet}

$$\beta^{\gamma} = \tan^{-1} \frac{|\phi^{jet2} - \phi^{\gamma}|}{\operatorname{sign}(\eta^{\gamma}) \cdot (\eta^{jet2} - \eta^{\gamma})}$$

DY/Z and SIDIS in CSS Evolution

- Measurements show that DY and SIDIS follow prediction of CSS evolution
- The CSS evolution equation comes directly out of the derivation for TMD factorization

FNAL fixed target DY

SIDIS Sivers Measurement

- SIDIS Sivers measurement shows ~5% asymmetries
- Smaller than the asymmetries measured in hadronic collisions
- SIDIS only sensitive to final-state effects from gluon exchanges

Phys. Lett. B770 (2017) 138-145

Partonic Contributions to Processes at LO

• π^0 contribution changes from gluon dominated at low p_T to mix of quark and gluons at high p_T

- Direct photon contribution dominated by QCD Compton scattering at all p_T
- NLO corrections small at midrapidity (Phys. Lett. B 140,87)

More about Color Coherence

- Radiation "drags" color away from vertex
- Destructive interference occurs away from emitted gluons
- Soft radiation inhibited in certain areas
- Leads to certain regions of phase space where gluons constructively or destructively interfere
- Joe Osborn (UM)

- See the following references
 - Phys. Rev. D 50,5562 (1994)
 - Phys. Lett. B 414 (1997) 419-427
 - Dokshitzer, Yuri. *Basics* of *Perturbative QCD* (Editions Frontieres, 1991) Chapters 4,5,9

Extending PHENIX Kinematic Reach

- ×° 0.5 PYTHIA8 y-iet 10^{2} sPHENIX Simulation 0.3 10 0.2 0.1 0.1 0.3 04 0.2 0.5 х, Central-Central γ -jet 10^{-2} 0.4 PYTHIA8 y-iet 04 sPHENIX Simulation 0.35 10² 0.3 0.25 0.2 10 0.15 0. 0.05 015 02 01 0.25 х,
- Central-forward (top) and central-central (bottom) γ -jet x_1, x_2 reach at $\sqrt{s} = 510$ GeV. Red triangle indicates x_1 - x_2 reach of PHENIX PRD 95, 072002 (2017)

Central-Forward $\gamma\text{-jet}$

- Color reconnection mechanisms within PYTHIA exhibit similar characteristics to measured Fourier harmonics in *p*+*p*
- Can color coherence generate long range eta correlations and PID radial flow patterns?
- Multiple partonic interactions are necessarily color connected

PRL 111, 042001 (2013)

Estimated γ -jet Statistical Precision

- γ-jet is the ideal channel limits color flow possibilities with sensitivity to only k_T
- RHIC kinematics important need high p_T processes which still have sensitivity to the nonperturbative physics
- sPHENIX will have excellent statistical precision for γ-jet at RHIC for the first time
- Will extend PRD 95, 072002 (2017) to study x dependence as well as role of fragmentation with tracking capabilities

Relation to Huge Transverse Single Spin Asymmetries?

- Transverse single spin asymmetries show up to 40% left-right asymmetry in p+p collisions
- Only ${\sim}5\%$ in semi-inclusive DIS
- Effects from color contributing?

Rev. Mod. Phys. 85, 655 (2013)

Relation to Huge Transverse Single Spin Asymmetries?

- Transverse single spin asymmetries are perturbatively predicted to go to 0 with increasing p_T
- Nonzero (\sim 7%) asymmetries have been measured up to $p_T \sim$ 7 GeV
- Transverse single spin asymmetries seem to not follow perturbative evolution as well
- Do correlations follow expectation of magnitudes for perturbative evolution? Calculations necessary...

Transverse-Momentum-Dependent PDF Zoo

Transverse-Momentum-Dependent (TMD) PDFs

- N Nucleon
- q Quark
- U Unpolarized
- L Longitudinally polarized
- T Transversely polarized

Image taken from Alexei Prokudin Spin 2016

• 8 TMD PDFs describing transverse partonic structure, spin-spin, and spin-momentum *correlations!*

Universality in Transverse-Momentum-Dependent Functions

• Sign change in parity-time odd transverse-momentum-dependent PDFs predicted due to initial-state vs. final-state gluon exchange with proton remnants in different processes!

$$f_{1T}^{\perp}(x,k_T,Q^2)|_{\mathrm{DY}} = -f_{1T}^{\perp}(x,k_T,Q^2)|_{\mathrm{SIDIS}}$$

Universality in Transverse-Momentum-Dependent Functions

- Sign change in parity-time odd transverse-momentum-dependent PDFs predicted due to initial-state vs. final-state gluon exchange with proton remnants in different processes!
- Factorization of transverse-momentum-dependent PDFs and fragmentation functions still predicted to hold in these QED processes

- Semi-inclusive DIS Sivers asymmetries have been measured, e.g. by HERMES and COMPASS collaborations
- First measurements of Drell-Yan (type) processes just recently reported
- Data support prediction of process dependent transverse-momentum-dependent PDF (although still statistically limited)

